grepai-storage-qdrant
npx skills add https://github.com/yoanbernabeu/grepai-skills --skill grepai-storage-qdrant
Agent 安装分布
Skill 文档
GrepAI Storage with Qdrant
This skill covers using Qdrant as the storage backend for GrepAI, offering high-performance vector search.
When to Use This Skill
- Need fastest possible search performance
- Very large codebases (50K+ files)
- Already using Qdrant infrastructure
- Want advanced vector search features
What is Qdrant?
Qdrant is a purpose-built vector database offering:
- â¡ Extremely fast vector similarity search
- ð Excellent scalability
- ð§ Advanced filtering capabilities
- ð³ Easy Docker deployment
Prerequisites
- Qdrant server running
- Network access to Qdrant
Advantages
| Benefit | Description |
|---|---|
| â¡ Performance | Fastest vector search |
| ð Scalability | Handles millions of vectors |
| ð Advanced | Filtering, payloads, sharding |
| ð³ Easy deploy | Docker-ready |
| âï¸ Cloud option | Qdrant Cloud available |
Setting Up Qdrant
Option 1: Docker (Recommended)
# Run Qdrant with persistent storage
docker run -d \
--name grepai-qdrant \
-p 6333:6333 \
-p 6334:6334 \
-v qdrant_storage:/qdrant/storage \
qdrant/qdrant
Ports:
6333: REST API6334: gRPC API (used by GrepAI)
Option 2: Docker Compose
# docker-compose.yml
version: '3.8'
services:
qdrant:
image: qdrant/qdrant
ports:
- "6333:6333"
- "6334:6334"
volumes:
- qdrant_storage:/qdrant/storage
environment:
- QDRANT__SERVICE__GRPC_PORT=6334
volumes:
qdrant_storage:
docker-compose up -d
Option 3: Qdrant Cloud
- Sign up at cloud.qdrant.io
- Create a cluster
- Get your endpoint and API key
Configuration
Basic Configuration (Local)
# .grepai/config.yaml
store:
backend: qdrant
qdrant:
endpoint: localhost
port: 6334
With TLS (Production)
store:
backend: qdrant
qdrant:
endpoint: qdrant.company.com
port: 6334
use_tls: true
With API Key (Qdrant Cloud)
store:
backend: qdrant
qdrant:
endpoint: your-cluster.aws.cloud.qdrant.io
port: 6334
use_tls: true
api_key: ${QDRANT_API_KEY}
Set the environment variable:
export QDRANT_API_KEY="your-api-key"
Configuration Options
| Option | Default | Description |
|---|---|---|
endpoint |
localhost |
Qdrant server hostname |
port |
6334 |
gRPC port |
use_tls |
false |
Enable TLS encryption |
api_key |
none | Authentication key |
Verifying Setup
Check Qdrant is Running
# REST API health check
curl http://localhost:6333/health
# Expected: {"status":"ok"}
Check Collections (after indexing)
# List collections
curl http://localhost:6333/collections
# Get collection info
curl http://localhost:6333/collections/grepai
From GrepAI
grepai status
# Should show Qdrant backend info
Qdrant Dashboard
Access the web dashboard at http://localhost:6333/dashboard:
- View collections
- Browse vectors
- Execute queries
- Monitor performance
Performance Characteristics
Search Latency
| Codebase Size | Vectors | Search Time |
|---|---|---|
| Small (1K files) | 5,000 | <10ms |
| Medium (10K files) | 50,000 | <20ms |
| Large (100K files) | 500,000 | <50ms |
Memory Usage
Qdrant loads vectors into memory for fast search:
| Vectors | Dimensions | Memory |
|---|---|---|
| 10,000 | 768 | ~60 MB |
| 100,000 | 768 | ~600 MB |
| 1,000,000 | 768 | ~6 GB |
Advanced Configuration
Qdrant Server Configuration
Create config/production.yaml:
storage:
storage_path: /qdrant/storage
service:
grpc_port: 6334
http_port: 6333
max_request_size_mb: 32
optimizers:
memmap_threshold_kb: 200000
indexing_threshold_kb: 50000
Mount in Docker:
docker run -d \
-v ./config:/qdrant/config \
-v qdrant_storage:/qdrant/storage \
qdrant/qdrant
Collection Settings
GrepAI creates a collection named grepai with:
- Vector size: matches your embedding dimensions
- Distance: Cosine similarity
- On-disk storage for large datasets
Clustering (Advanced)
For very large deployments, Qdrant supports distributed mode:
# qdrant config
cluster:
enabled: true
p2p:
port: 6335
Backup and Restore
Snapshot Creation
# Create snapshot via REST API
curl -X POST 'http://localhost:6333/collections/grepai/snapshots'
Restore Snapshot
# Restore from snapshot
curl -X PUT 'http://localhost:6333/collections/grepai/snapshots/recover' \
-H 'Content-Type: application/json' \
-d '{"location": "/path/to/snapshot"}'
Migrating from GOB
- Start Qdrant:
docker run -d --name qdrant -p 6333:6333 -p 6334:6334 qdrant/qdrant
- Update configuration:
store:
backend: qdrant
qdrant:
endpoint: localhost
port: 6334
- Delete old index:
rm .grepai/index.gob
- Re-index:
grepai watch
Migrating from PostgreSQL
- Start Qdrant
- Update configuration to use Qdrant
- Re-index (embeddings must be regenerated)
Common Issues
â Problem: Connection refused â Solution: Ensure Qdrant is running:
docker ps | grep qdrant
docker start grepai-qdrant
â Problem: gRPC connection failed â Solution: Check port 6334 is exposed:
docker run -p 6334:6334 ...
â Problem: Authentication failed â Solution: Check API key:
echo $QDRANT_API_KEY
â Problem: Out of memory â Solutions:
- Enable on-disk storage in Qdrant config
- Increase Docker memory limit
- Use Qdrant Cloud for managed scaling
â Problem: Slow initial indexing â Solution: This is normal; Qdrant optimizes in background. Searches will be fast after indexing completes.
Qdrant vs PostgreSQL
| Feature | Qdrant | PostgreSQL |
|---|---|---|
| Search speed | â¡â¡â¡ | â¡â¡ |
| Setup complexity | Easy (Docker) | Medium |
| SQL queries | â | â |
| Scalability | Excellent | Good |
| Memory efficiency | Excellent | Good |
| Team familiarity | Lower | Higher |
Recommendation: Use Qdrant for large codebases or maximum performance. Use PostgreSQL if you need SQL integration or team is familiar with it.
Best Practices
- Use persistent volume: Mount
/qdrant/storage - Enable TLS in production: Set
use_tls: true - Secure API key: Use environment variables
- Monitor memory: Vector search is memory-intensive
- Regular snapshots: Backup before major changes
Output Format
Qdrant storage status:
â
Qdrant Storage Configured
Backend: Qdrant
Endpoint: localhost:6334
TLS: disabled
Collection: grepai
Contents:
- Files: 5,000
- Vectors: 25,000
- Dimensions: 768
Performance:
- Connection: OK
- Indexed: Yes
- Search latency: ~15ms