grepai-storage-postgres

📁 yoanbernabeu/grepai-skills 📅 Jan 28, 2026
63
总安装量
63
周安装量
#3462
全站排名
安装命令
npx skills add https://github.com/yoanbernabeu/grepai-skills --skill grepai-storage-postgres

Agent 安装分布

claude-code 42
opencode 41
codex 39
gemini-cli 34
cursor 27

Skill 文档

GrepAI Storage with PostgreSQL

This skill covers using PostgreSQL with the pgvector extension as the storage backend for GrepAI.

When to Use This Skill

  • Team environments with shared index
  • Large codebases (10K+ files)
  • Need concurrent access
  • Integration with existing PostgreSQL infrastructure

Prerequisites

  1. PostgreSQL 14+ with pgvector extension
  2. Database user with create table permissions
  3. Network access to PostgreSQL server

Advantages

Benefit Description
👥 Team sharing Multiple users can access same index
📏 Scalable Handles large codebases
🔄 Concurrent Multiple simultaneous searches
💾 Persistent Data survives machine restarts
🔧 Familiar Standard database tooling

Setting Up PostgreSQL with pgvector

Option 1: Docker (Recommended for Development)

# Run PostgreSQL with pgvector
docker run -d \
  --name grepai-postgres \
  -e POSTGRES_USER=grepai \
  -e POSTGRES_PASSWORD=grepai \
  -e POSTGRES_DB=grepai \
  -p 5432:5432 \
  pgvector/pgvector:pg16

Option 2: Install on Existing PostgreSQL

# Install pgvector extension (Ubuntu/Debian)
sudo apt install postgresql-16-pgvector

# Or compile from source
git clone https://github.com/pgvector/pgvector.git
cd pgvector
make
sudo make install

Then enable the extension:

-- Connect to your database
CREATE EXTENSION IF NOT EXISTS vector;

Option 3: Managed Services

  • Supabase: pgvector included by default
  • Neon: pgvector available
  • AWS RDS: Install pgvector extension
  • Azure Database: pgvector available

Configuration

Basic Configuration

# .grepai/config.yaml
store:
  backend: postgres
  postgres:
    dsn: postgres://user:password@localhost:5432/grepai

With Environment Variable

store:
  backend: postgres
  postgres:
    dsn: ${DATABASE_URL}

Set the environment variable:

export DATABASE_URL="postgres://user:password@localhost:5432/grepai"

Full DSN Options

store:
  backend: postgres
  postgres:
    dsn: postgres://user:password@host:5432/database?sslmode=require

DSN components:

  • user: Database username
  • password: Database password
  • host: Server hostname or IP
  • 5432: Port (default: 5432)
  • database: Database name
  • sslmode: SSL mode (disable, require, verify-full)

SSL Modes

Mode Description Use Case
disable No SSL Local development
require SSL required Production
verify-full SSL + verify certificate High security
# Production with SSL
store:
  backend: postgres
  postgres:
    dsn: postgres://user:pass@prod.db.com:5432/grepai?sslmode=require

Database Schema

GrepAI automatically creates these tables:

-- Vector embeddings table
CREATE TABLE IF NOT EXISTS embeddings (
    id SERIAL PRIMARY KEY,
    file_path TEXT NOT NULL,
    chunk_index INTEGER NOT NULL,
    content TEXT NOT NULL,
    start_line INTEGER,
    end_line INTEGER,
    embedding vector(768),  -- Dimension matches your model
    created_at TIMESTAMP DEFAULT NOW(),
    UNIQUE(file_path, chunk_index)
);

-- Index for vector similarity search
CREATE INDEX ON embeddings USING ivfflat (embedding vector_cosine_ops);

Verifying Setup

Check pgvector Extension

-- Connect to database
psql -U grepai -d grepai

-- Check extension is installed
SELECT * FROM pg_extension WHERE extname = 'vector';

-- Check GrepAI tables exist (after first grepai watch)
\dt

Test Connection from GrepAI

# Check status
grepai status

# Should show PostgreSQL backend info

Performance Tuning

PostgreSQL Configuration

For better vector search performance:

-- Increase work memory for vector operations
SET work_mem = '256MB';

-- Adjust for your hardware
SET effective_cache_size = '4GB';
SET shared_buffers = '1GB';

Index Tuning

For large indices, tune the IVFFlat index:

-- More lists = faster search, more memory
CREATE INDEX ON embeddings
USING ivfflat (embedding vector_cosine_ops)
WITH (lists = 100);  -- Adjust based on row count

Rule of thumb: lists = sqrt(rows)

Concurrent Access

PostgreSQL handles concurrent access automatically:

  • Multiple grepai search commands work simultaneously
  • One grepai watch daemon per codebase
  • Many users can share the same index

Team Setup

Shared Database

All team members point to the same database:

# Each developer's .grepai/config.yaml
store:
  backend: postgres
  postgres:
    dsn: postgres://team:secret@shared-db.company.com:5432/grepai

Per-Project Databases

For isolated projects, use separate databases:

# Create databases
createdb -U postgres grepai_projecta
createdb -U postgres grepai_projectb
# Project A config
store:
  backend: postgres
  postgres:
    dsn: postgres://user:pass@localhost:5432/grepai_projecta

Backup and Restore

Backup

pg_dump -U grepai -d grepai > grepai_backup.sql

Restore

psql -U grepai -d grepai < grepai_backup.sql

Migrating from GOB

  1. Set up PostgreSQL with pgvector
  2. Update configuration:
store:
  backend: postgres
  postgres:
    dsn: postgres://user:pass@localhost:5432/grepai
  1. Delete old index:
rm .grepai/index.gob
  1. Re-index:
grepai watch

Common Issues

❌ Problem: FATAL: password authentication failed ✅ Solution: Check DSN credentials and pg_hba.conf

❌ Problem: ERROR: extension "vector" is not available ✅ Solution: Install pgvector:

sudo apt install postgresql-16-pgvector
# Then: CREATE EXTENSION vector;

❌ Problem: ERROR: type "vector" does not exist ✅ Solution: Enable extension in the database:

CREATE EXTENSION IF NOT EXISTS vector;

❌ Problem: Connection refused ✅ Solution:

  • Check PostgreSQL is running
  • Verify host and port
  • Check firewall rules

❌ Problem: Slow searches ✅ Solution:

  • Add IVFFlat index
  • Increase work_mem
  • Vacuum and analyze tables

Best Practices

  1. Use environment variables: Don’t commit credentials
  2. Enable SSL: For remote databases
  3. Regular backups: pg_dump before major changes
  4. Monitor performance: Check query times
  5. Index maintenance: Regular VACUUM ANALYZE

Output Format

PostgreSQL storage status:

✅ PostgreSQL Storage Configured

   Backend: PostgreSQL + pgvector
   Host: localhost:5432
   Database: grepai
   SSL: disabled

   Contents:
   - Files: 2,450
   - Chunks: 12,340
   - Vector dimension: 768

   Performance:
   - Connection: OK
   - IVFFlat index: Yes
   - Search latency: ~50ms