grepai-ollama-setup

📁 yoanbernabeu/grepai-skills 📅 Jan 28, 2026
74
总安装量
74
周安装量
#2979
全站排名
安装命令
npx skills add https://github.com/yoanbernabeu/grepai-skills --skill grepai-ollama-setup

Agent 安装分布

claude-code 51
opencode 46
codex 45
github-copilot 35
cursor 32

Skill 文档

Ollama Setup for GrepAI

This skill covers installing and configuring Ollama as the local embedding provider for GrepAI. Ollama enables 100% private code search where your code never leaves your machine.

When to Use This Skill

  • Setting up GrepAI with local, private embeddings
  • Installing Ollama for the first time
  • Choosing and downloading embedding models
  • Troubleshooting Ollama connection issues

Why Ollama?

Benefit Description
🔒 Privacy Code never leaves your machine
💰 Free No API costs
⚡ Fast Local processing, no network latency
🔌 Offline Works without internet

Installation

macOS (Homebrew)

# Install Ollama
brew install ollama

# Start the Ollama service
ollama serve

macOS (Direct Download)

  1. Download from ollama.com
  2. Open the .dmg and drag to Applications
  3. Launch Ollama from Applications

Linux

# One-line installer
curl -fsSL https://ollama.com/install.sh | sh

# Start the service
ollama serve

Windows

  1. Download installer from ollama.com
  2. Run the installer
  3. Ollama starts automatically as a service

Downloading Embedding Models

GrepAI requires an embedding model to convert code into vectors.

Recommended Model: nomic-embed-text

# Download the recommended model (768 dimensions)
ollama pull nomic-embed-text

Specifications:

  • Dimensions: 768
  • Size: ~274 MB
  • Performance: Excellent for code search
  • Language: English-optimized

Alternative Models

# Multilingual support (better for non-English code/comments)
ollama pull nomic-embed-text-v2-moe

# Larger, more accurate
ollama pull bge-m3

# Maximum quality
ollama pull mxbai-embed-large
Model Dimensions Size Best For
nomic-embed-text 768 274 MB General code search
nomic-embed-text-v2-moe 768 500 MB Multilingual codebases
bge-m3 1024 1.2 GB Large codebases
mxbai-embed-large 1024 670 MB Maximum accuracy

Verifying Installation

Check Ollama is Running

# Check if Ollama server is responding
curl http://localhost:11434/api/tags

# Expected output: JSON with available models

List Downloaded Models

ollama list

# Output:
# NAME                     ID           SIZE    MODIFIED
# nomic-embed-text:latest  abc123...    274 MB  2 hours ago

Test Embedding Generation

# Quick test (should return embedding vector)
curl http://localhost:11434/api/embeddings -d '{
  "model": "nomic-embed-text",
  "prompt": "function hello() { return world; }"
}'

Configuring GrepAI for Ollama

After installing Ollama, configure GrepAI to use it:

# .grepai/config.yaml
embedder:
  provider: ollama
  model: nomic-embed-text
  endpoint: http://localhost:11434

This is the default configuration when you run grepai init, so no changes are needed if using nomic-embed-text.

Running Ollama

Foreground (Development)

# Run in current terminal (see logs)
ollama serve

Background (macOS/Linux)

# Using nohup
nohup ollama serve &

# Or as a systemd service (Linux)
sudo systemctl enable ollama
sudo systemctl start ollama

Check Status

# Check if running
pgrep -f ollama

# Or test the API
curl -s http://localhost:11434/api/tags | head -1

Resource Considerations

Memory Usage

Embedding models load into RAM:

  • nomic-embed-text: ~500 MB RAM
  • bge-m3: ~1.5 GB RAM
  • mxbai-embed-large: ~1 GB RAM

CPU vs GPU

Ollama uses CPU by default. For faster embeddings:

  • macOS: Uses Metal (Apple Silicon) automatically
  • Linux/Windows: Install CUDA for NVIDIA GPU support

Common Issues

❌ Problem: connection refused to localhost:11434 ✅ Solution: Start Ollama:

ollama serve

❌ Problem: Model not found ✅ Solution: Pull the model first:

ollama pull nomic-embed-text

❌ Problem: Slow embedding generation ✅ Solution:

  • Use a smaller model
  • Ensure Ollama is using GPU (check ollama ps)
  • Close other memory-intensive applications

❌ Problem: Out of memory ✅ Solution: Use a smaller model or increase system RAM

Best Practices

  1. Start Ollama before GrepAI: Ensure ollama serve is running
  2. Use recommended model: nomic-embed-text offers best balance
  3. Keep Ollama running: Leave it as a background service
  4. Update periodically: ollama pull nomic-embed-text for updates

Output Format

After successful setup:

✅ Ollama Setup Complete

   Ollama Version: 0.1.x
   Endpoint: http://localhost:11434
   Model: nomic-embed-text (768 dimensions)
   Status: Running

   GrepAI is ready to use with local embeddings.
   Your code will never leave your machine.