python-resource-management

📁 wshobson/agents 📅 14 days ago
811
总安装量
816
周安装量
#427
全站排名
安装命令
npx skills add https://github.com/wshobson/agents --skill python-resource-management

Agent 安装分布

claude-code 612
opencode 542
gemini-cli 515
codex 475
cursor 425
antigravity 390

Skill 文档

Python Resource Management

Manage resources deterministically using context managers. Resources like database connections, file handles, and network sockets should be released reliably, even when exceptions occur.

When to Use This Skill

  • Managing database connections and connection pools
  • Working with file handles and I/O
  • Implementing custom context managers
  • Building streaming responses with state
  • Handling nested resource cleanup
  • Creating async context managers

Core Concepts

1. Context Managers

The with statement ensures resources are released automatically, even on exceptions.

2. Protocol Methods

__enter__/__exit__ for sync, __aenter__/__aexit__ for async resource management.

3. Unconditional Cleanup

__exit__ always runs, regardless of whether an exception occurred.

4. Exception Handling

Return True from __exit__ to suppress exceptions, False to propagate them.

Quick Start

from contextlib import contextmanager

@contextmanager
def managed_resource():
    resource = acquire_resource()
    try:
        yield resource
    finally:
        resource.cleanup()

with managed_resource() as r:
    r.do_work()

Fundamental Patterns

Pattern 1: Class-Based Context Manager

Implement the context manager protocol for complex resources.

class DatabaseConnection:
    """Database connection with automatic cleanup."""

    def __init__(self, dsn: str) -> None:
        self._dsn = dsn
        self._conn: Connection | None = None

    def connect(self) -> None:
        """Establish database connection."""
        self._conn = psycopg.connect(self._dsn)

    def close(self) -> None:
        """Close connection if open."""
        if self._conn is not None:
            self._conn.close()
            self._conn = None

    def __enter__(self) -> "DatabaseConnection":
        """Enter context: connect and return self."""
        self.connect()
        return self

    def __exit__(
        self,
        exc_type: type[BaseException] | None,
        exc_val: BaseException | None,
        exc_tb: TracebackType | None,
    ) -> None:
        """Exit context: always close connection."""
        self.close()

# Usage with context manager (preferred)
with DatabaseConnection(dsn) as db:
    result = db.execute(query)

# Manual management when needed
db = DatabaseConnection(dsn)
db.connect()
try:
    result = db.execute(query)
finally:
    db.close()

Pattern 2: Async Context Manager

For async resources, implement the async protocol.

class AsyncDatabasePool:
    """Async database connection pool."""

    def __init__(self, dsn: str, min_size: int = 1, max_size: int = 10) -> None:
        self._dsn = dsn
        self._min_size = min_size
        self._max_size = max_size
        self._pool: asyncpg.Pool | None = None

    async def __aenter__(self) -> "AsyncDatabasePool":
        """Create connection pool."""
        self._pool = await asyncpg.create_pool(
            self._dsn,
            min_size=self._min_size,
            max_size=self._max_size,
        )
        return self

    async def __aexit__(
        self,
        exc_type: type[BaseException] | None,
        exc_val: BaseException | None,
        exc_tb: TracebackType | None,
    ) -> None:
        """Close all connections in pool."""
        if self._pool is not None:
            await self._pool.close()

    async def execute(self, query: str, *args) -> list[dict]:
        """Execute query using pooled connection."""
        async with self._pool.acquire() as conn:
            return await conn.fetch(query, *args)

# Usage
async with AsyncDatabasePool(dsn) as pool:
    users = await pool.execute("SELECT * FROM users WHERE active = $1", True)

Pattern 3: Using @contextmanager Decorator

Simplify context managers with the decorator for straightforward cases.

from contextlib import contextmanager, asynccontextmanager
import time
import structlog

logger = structlog.get_logger()

@contextmanager
def timed_block(name: str):
    """Time a block of code."""
    start = time.perf_counter()
    try:
        yield
    finally:
        elapsed = time.perf_counter() - start
        logger.info(f"{name} completed", duration_seconds=round(elapsed, 3))

# Usage
with timed_block("data_processing"):
    process_large_dataset()

@asynccontextmanager
async def database_transaction(conn: AsyncConnection):
    """Manage database transaction."""
    await conn.execute("BEGIN")
    try:
        yield conn
        await conn.execute("COMMIT")
    except Exception:
        await conn.execute("ROLLBACK")
        raise

# Usage
async with database_transaction(conn) as tx:
    await tx.execute("INSERT INTO users ...")
    await tx.execute("INSERT INTO audit_log ...")

Pattern 4: Unconditional Resource Release

Always clean up resources in __exit__, regardless of exceptions.

class FileProcessor:
    """Process file with guaranteed cleanup."""

    def __init__(self, path: str) -> None:
        self._path = path
        self._file: IO | None = None
        self._temp_files: list[Path] = []

    def __enter__(self) -> "FileProcessor":
        self._file = open(self._path, "r")
        return self

    def __exit__(
        self,
        exc_type: type[BaseException] | None,
        exc_val: BaseException | None,
        exc_tb: TracebackType | None,
    ) -> None:
        """Clean up all resources unconditionally."""
        # Close main file
        if self._file is not None:
            self._file.close()

        # Clean up any temporary files
        for temp_file in self._temp_files:
            try:
                temp_file.unlink()
            except OSError:
                pass  # Best effort cleanup

        # Return None/False to propagate any exception

Advanced Patterns

Pattern 5: Selective Exception Suppression

Only suppress specific, documented exceptions.

class StreamWriter:
    """Writer that handles broken pipe gracefully."""

    def __init__(self, stream) -> None:
        self._stream = stream

    def __enter__(self) -> "StreamWriter":
        return self

    def __exit__(
        self,
        exc_type: type[BaseException] | None,
        exc_val: BaseException | None,
        exc_tb: TracebackType | None,
    ) -> bool:
        """Clean up, suppressing BrokenPipeError on shutdown."""
        self._stream.close()

        # Suppress BrokenPipeError (client disconnected)
        # This is expected behavior, not an error
        if exc_type is BrokenPipeError:
            return True  # Exception suppressed

        return False  # Propagate all other exceptions

Pattern 6: Streaming with Accumulated State

Maintain both incremental chunks and accumulated state during streaming.

from collections.abc import Generator
from dataclasses import dataclass, field

@dataclass
class StreamingResult:
    """Accumulated streaming result."""

    chunks: list[str] = field(default_factory=list)
    _finalized: bool = False

    @property
    def content(self) -> str:
        """Get accumulated content."""
        return "".join(self.chunks)

    def add_chunk(self, chunk: str) -> None:
        """Add chunk to accumulator."""
        if self._finalized:
            raise RuntimeError("Cannot add to finalized result")
        self.chunks.append(chunk)

    def finalize(self) -> str:
        """Mark stream complete and return content."""
        self._finalized = True
        return self.content

def stream_with_accumulation(
    response: StreamingResponse,
) -> Generator[tuple[str, str], None, str]:
    """Stream response while accumulating content.

    Yields:
        Tuple of (accumulated_content, new_chunk) for each chunk.

    Returns:
        Final accumulated content.
    """
    result = StreamingResult()

    for chunk in response.iter_content():
        result.add_chunk(chunk)
        yield result.content, chunk

    return result.finalize()

Pattern 7: Efficient String Accumulation

Avoid O(n²) string concatenation when accumulating.

def accumulate_stream(stream) -> str:
    """Efficiently accumulate stream content."""
    # BAD: O(n²) due to string immutability
    # content = ""
    # for chunk in stream:
    #     content += chunk  # Creates new string each time

    # GOOD: O(n) with list and join
    chunks: list[str] = []
    for chunk in stream:
        chunks.append(chunk)
    return "".join(chunks)  # Single allocation

Pattern 8: Tracking Stream Metrics

Measure time-to-first-byte and total streaming time.

import time
from collections.abc import Generator

def stream_with_metrics(
    response: StreamingResponse,
) -> Generator[str, None, dict]:
    """Stream response while collecting metrics.

    Yields:
        Content chunks.

    Returns:
        Metrics dictionary.
    """
    start = time.perf_counter()
    first_chunk_time: float | None = None
    chunk_count = 0
    total_bytes = 0

    for chunk in response.iter_content():
        if first_chunk_time is None:
            first_chunk_time = time.perf_counter() - start

        chunk_count += 1
        total_bytes += len(chunk.encode())
        yield chunk

    total_time = time.perf_counter() - start

    return {
        "time_to_first_byte_ms": round((first_chunk_time or 0) * 1000, 2),
        "total_time_ms": round(total_time * 1000, 2),
        "chunk_count": chunk_count,
        "total_bytes": total_bytes,
    }

Pattern 9: Managing Multiple Resources with ExitStack

Handle a dynamic number of resources cleanly.

from contextlib import ExitStack, AsyncExitStack
from pathlib import Path

def process_files(paths: list[Path]) -> list[str]:
    """Process multiple files with automatic cleanup."""
    results = []

    with ExitStack() as stack:
        # Open all files - they'll all be closed when block exits
        files = [stack.enter_context(open(p)) for p in paths]

        for f in files:
            results.append(f.read())

    return results

async def process_connections(hosts: list[str]) -> list[dict]:
    """Process multiple async connections."""
    results = []

    async with AsyncExitStack() as stack:
        connections = [
            await stack.enter_async_context(connect_to_host(host))
            for host in hosts
        ]

        for conn in connections:
            results.append(await conn.fetch_data())

    return results

Best Practices Summary

  1. Always use context managers – For any resource that needs cleanup
  2. Clean up unconditionally__exit__ runs even on exception
  3. Don’t suppress unexpectedly – Return False unless suppression is intentional
  4. Use @contextmanager – For simple resource patterns
  5. Implement both protocols – Support with and manual management
  6. Use ExitStack – For dynamic numbers of resources
  7. Accumulate efficiently – List + join, not string concatenation
  8. Track metrics – Time-to-first-byte matters for streaming
  9. Document behavior – Especially exception suppression
  10. Test cleanup paths – Verify resources are released on errors