kpi-dashboard-design
1.7K
总安装量
1.7K
周安装量
#195
全站排名
安装命令
npx skills add https://github.com/wshobson/agents --skill kpi-dashboard-design
Agent 安装分布
claude-code
1.3K
opencode
1.1K
gemini-cli
1.1K
cursor
991
codex
954
antigravity
931
Skill 文档
KPI Dashboard Design
Comprehensive patterns for designing effective Key Performance Indicator (KPI) dashboards that drive business decisions.
When to Use This Skill
- Designing executive dashboards
- Selecting meaningful KPIs
- Building real-time monitoring displays
- Creating department-specific metrics views
- Improving existing dashboard layouts
- Establishing metric governance
Core Concepts
1. KPI Framework
| Level | Focus | Update Frequency | Audience |
|---|---|---|---|
| Strategic | Long-term goals | Monthly/Quarterly | Executives |
| Tactical | Department goals | Weekly/Monthly | Managers |
| Operational | Day-to-day | Real-time/Daily | Teams |
2. SMART KPIs
Specific: Clear definition
Measurable: Quantifiable
Achievable: Realistic targets
Relevant: Aligned to goals
Time-bound: Defined period
3. Dashboard Hierarchy
âââ Executive Summary (1 page)
â âââ 4-6 headline KPIs
â âââ Trend indicators
â âââ Key alerts
âââ Department Views
â âââ Sales Dashboard
â âââ Marketing Dashboard
â âââ Operations Dashboard
â âââ Finance Dashboard
âââ Detailed Drilldowns
âââ Individual metrics
âââ Root cause analysis
Common KPIs by Department
Sales KPIs
Revenue Metrics:
- Monthly Recurring Revenue (MRR)
- Annual Recurring Revenue (ARR)
- Average Revenue Per User (ARPU)
- Revenue Growth Rate
Pipeline Metrics:
- Sales Pipeline Value
- Win Rate
- Average Deal Size
- Sales Cycle Length
Activity Metrics:
- Calls/Emails per Rep
- Demos Scheduled
- Proposals Sent
- Close Rate
Marketing KPIs
Acquisition:
- Cost Per Acquisition (CPA)
- Customer Acquisition Cost (CAC)
- Lead Volume
- Marketing Qualified Leads (MQL)
Engagement:
- Website Traffic
- Conversion Rate
- Email Open/Click Rate
- Social Engagement
ROI:
- Marketing ROI
- Campaign Performance
- Channel Attribution
- CAC Payback Period
Product KPIs
Usage:
- Daily/Monthly Active Users (DAU/MAU)
- Session Duration
- Feature Adoption Rate
- Stickiness (DAU/MAU)
Quality:
- Net Promoter Score (NPS)
- Customer Satisfaction (CSAT)
- Bug/Issue Count
- Time to Resolution
Growth:
- User Growth Rate
- Activation Rate
- Retention Rate
- Churn Rate
Finance KPIs
Profitability:
- Gross Margin
- Net Profit Margin
- EBITDA
- Operating Margin
Liquidity:
- Current Ratio
- Quick Ratio
- Cash Flow
- Working Capital
Efficiency:
- Revenue per Employee
- Operating Expense Ratio
- Days Sales Outstanding
- Inventory Turnover
Dashboard Layout Patterns
Pattern 1: Executive Summary
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
â EXECUTIVE DASHBOARD [Date Range â¼] â
âââââââââââââââ¬ââââââââââââââ¬ââââââââââââââ¬ââââââââââââââââââ¤
â REVENUE â PROFIT â CUSTOMERS â NPS SCORE â
â $2.4M â $450K â 12,450 â 72 â
â â² 12% â â² 8% â â² 15% â â² 5pts â
âââââââââââââââ´ââââââââââââââ´ââââââââââââââ´ââââââââââââââââââ¤
â â
â Revenue Trend â Revenue by Product â
â âââââââââââââââââââââââââ â ââââââââââââââââââââ â
â â /\ /\ â â â ââââââââ 45% â â
â â / \ / \ /\ â â â ââââââ 32% â â
â â / \/ \ / \ â â â ââââ 18% â â
â â / \/ \ â â â ââ 5% â â
â âââââââââââââââââââââââââ â ââââââââââââââââââââ â
â â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¤
â ð´ Alert: Churn rate exceeded threshold (>5%) â
â ð¡ Warning: Support ticket volume 20% above average â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
Pattern 2: SaaS Metrics Dashboard
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
â SAAS METRICS Jan 2024 [Monthly â¼] â
ââââââââââââââââââââââââ¬âââââââââââââââââââââââââââââââââââââââ¤
â ââââââââââââââââââ â MRR GROWTH â
â â MRR â â ââââââââââââââââââââââââââââââââââ â
â â $125,000 â â â /ââ â â
â â â² 8% â â â /ââââ/ â â
â ââââââââââââââââââ â â /ââââ/ â â
â ââââââââââââââââââ â â /ââââ/ â â
â â ARR â â â /ââââ/ â â
â â $1,500,000 â â ââââââââââââââââââââââââââââââââââ â
â â â² 15% â â J F M A M J J A S O N D â
â ââââââââââââââââââ â â
ââââââââââââââââââââââââ¼âââââââââââââââââââââââââââââââââââââââ¤
â UNIT ECONOMICS â COHORT RETENTION â
â â â
â CAC: $450 â Month 1: ââââââââââââââââââââ 100% â
â LTV: $2,700 â Month 3: âââââââââââââââââ 85% â
â LTV/CAC: 6.0x â Month 6: ââââââââââââââââ 80% â
â â Month 12: ââââââââââââââ 72% â
â Payback: 4 months â â
ââââââââââââââââââââââââ´âââââââââââââââââââââââââââââââââââââââ¤
â CHURN ANALYSIS â
â ââââââââââââ¬âââââââââââ¬âââââââââââ¬âââââââââââââââââââââââ â
â â Gross â Net â Logo â Expansion â â
â â 4.2% â 1.8% â 3.1% â 2.4% â â
â ââââââââââââ´âââââââââââ´âââââââââââ´âââââââââââââââââââââââ â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
Pattern 3: Real-time Operations
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
â OPERATIONS CENTER Live â Last: 10:42:15 â
ââââââââââââââââââââââââââââââ¬âââââââââââââââââââââââââââââââââ¤
â SYSTEM HEALTH â SERVICE STATUS â
â ââââââââââââââââââââââââ â â
â â CPU MEM DISK â â â API Gateway Healthy â
â â 45% 72% 58% â â â User Service Healthy â
â â âââ ââââ âââ â â â Payment Service Degraded â
â â âââ ââââ âââ â â â Database Healthy â
â â âââ ââââ âââ â â â Cache Healthy â
â ââââââââââââââââââââââââ â â
ââââââââââââââââââââââââââââââ¼âââââââââââââââââââââââââââââââââ¤
â REQUEST THROUGHPUT â ERROR RATE â
â ââââââââââââââââââââââââ â ââââââââââââââââââââââââââââ â
â â âââââ
ââââââ
ââââââââ
â â â ââââââââââââââââââââ â â
â ââââââââââââââââââââââââ â ââââââââââââââââââââââââââââ â
â Current: 12,450 req/s â Current: 0.02% â
â Peak: 18,200 req/s â Threshold: 1.0% â
ââââââââââââââââââââââââââââââ´âââââââââââââââââââââââââââââââââ¤
â RECENT ALERTS â
â 10:40 ð¡ High latency on payment-service (p99 > 500ms) â
â 10:35 ð¢ Resolved: Database connection pool recovered â
â 10:22 ð´ Payment service circuit breaker tripped â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
Implementation Patterns
SQL for KPI Calculations
-- Monthly Recurring Revenue (MRR)
WITH mrr_calculation AS (
SELECT
DATE_TRUNC('month', billing_date) AS month,
SUM(
CASE subscription_interval
WHEN 'monthly' THEN amount
WHEN 'yearly' THEN amount / 12
WHEN 'quarterly' THEN amount / 3
END
) AS mrr
FROM subscriptions
WHERE status = 'active'
GROUP BY DATE_TRUNC('month', billing_date)
)
SELECT
month,
mrr,
LAG(mrr) OVER (ORDER BY month) AS prev_mrr,
(mrr - LAG(mrr) OVER (ORDER BY month)) / LAG(mrr) OVER (ORDER BY month) * 100 AS growth_pct
FROM mrr_calculation;
-- Cohort Retention
WITH cohorts AS (
SELECT
user_id,
DATE_TRUNC('month', created_at) AS cohort_month
FROM users
),
activity AS (
SELECT
user_id,
DATE_TRUNC('month', event_date) AS activity_month
FROM user_events
WHERE event_type = 'active_session'
)
SELECT
c.cohort_month,
EXTRACT(MONTH FROM age(a.activity_month, c.cohort_month)) AS months_since_signup,
COUNT(DISTINCT a.user_id) AS active_users,
COUNT(DISTINCT a.user_id)::FLOAT / COUNT(DISTINCT c.user_id) * 100 AS retention_rate
FROM cohorts c
LEFT JOIN activity a ON c.user_id = a.user_id
AND a.activity_month >= c.cohort_month
GROUP BY c.cohort_month, EXTRACT(MONTH FROM age(a.activity_month, c.cohort_month))
ORDER BY c.cohort_month, months_since_signup;
-- Customer Acquisition Cost (CAC)
SELECT
DATE_TRUNC('month', acquired_date) AS month,
SUM(marketing_spend) / NULLIF(COUNT(new_customers), 0) AS cac,
SUM(marketing_spend) AS total_spend,
COUNT(new_customers) AS customers_acquired
FROM (
SELECT
DATE_TRUNC('month', u.created_at) AS acquired_date,
u.id AS new_customers,
m.spend AS marketing_spend
FROM users u
JOIN marketing_spend m ON DATE_TRUNC('month', u.created_at) = m.month
WHERE u.source = 'marketing'
) acquisition
GROUP BY DATE_TRUNC('month', acquired_date);
Python Dashboard Code (Streamlit)
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
st.set_page_config(page_title="KPI Dashboard", layout="wide")
# Header with date filter
col1, col2 = st.columns([3, 1])
with col1:
st.title("Executive Dashboard")
with col2:
date_range = st.selectbox(
"Period",
["Last 7 Days", "Last 30 Days", "Last Quarter", "YTD"]
)
# KPI Cards
def metric_card(label, value, delta, prefix="", suffix=""):
delta_color = "green" if delta >= 0 else "red"
delta_arrow = "â²" if delta >= 0 else "â¼"
st.metric(
label=label,
value=f"{prefix}{value:,.0f}{suffix}",
delta=f"{delta_arrow} {abs(delta):.1f}%"
)
col1, col2, col3, col4 = st.columns(4)
with col1:
metric_card("Revenue", 2400000, 12.5, prefix="$")
with col2:
metric_card("Customers", 12450, 15.2)
with col3:
metric_card("NPS Score", 72, 5.0)
with col4:
metric_card("Churn Rate", 4.2, -0.8, suffix="%")
# Charts
col1, col2 = st.columns(2)
with col1:
st.subheader("Revenue Trend")
revenue_data = pd.DataFrame({
'Month': pd.date_range('2024-01-01', periods=12, freq='M'),
'Revenue': [180000, 195000, 210000, 225000, 240000, 255000,
270000, 285000, 300000, 315000, 330000, 345000]
})
fig = px.line(revenue_data, x='Month', y='Revenue',
line_shape='spline', markers=True)
fig.update_layout(height=300)
st.plotly_chart(fig, use_container_width=True)
with col2:
st.subheader("Revenue by Product")
product_data = pd.DataFrame({
'Product': ['Enterprise', 'Professional', 'Starter', 'Other'],
'Revenue': [45, 32, 18, 5]
})
fig = px.pie(product_data, values='Revenue', names='Product',
hole=0.4)
fig.update_layout(height=300)
st.plotly_chart(fig, use_container_width=True)
# Cohort Heatmap
st.subheader("Cohort Retention")
cohort_data = pd.DataFrame({
'Cohort': ['Jan', 'Feb', 'Mar', 'Apr', 'May'],
'M0': [100, 100, 100, 100, 100],
'M1': [85, 87, 84, 86, 88],
'M2': [78, 80, 76, 79, None],
'M3': [72, 74, 70, None, None],
'M4': [68, 70, None, None, None],
})
fig = go.Figure(data=go.Heatmap(
z=cohort_data.iloc[:, 1:].values,
x=['M0', 'M1', 'M2', 'M3', 'M4'],
y=cohort_data['Cohort'],
colorscale='Blues',
text=cohort_data.iloc[:, 1:].values,
texttemplate='%{text}%',
textfont={"size": 12},
))
fig.update_layout(height=250)
st.plotly_chart(fig, use_container_width=True)
# Alerts Section
st.subheader("Alerts")
alerts = [
{"level": "error", "message": "Churn rate exceeded threshold (>5%)"},
{"level": "warning", "message": "Support ticket volume 20% above average"},
]
for alert in alerts:
if alert["level"] == "error":
st.error(f"ð´ {alert['message']}")
elif alert["level"] == "warning":
st.warning(f"ð¡ {alert['message']}")
Best Practices
Do’s
- Limit to 5-7 KPIs – Focus on what matters
- Show context – Comparisons, trends, targets
- Use consistent colors – Red=bad, green=good
- Enable drilldown – From summary to detail
- Update appropriately – Match metric frequency
Don’ts
- Don’t show vanity metrics – Focus on actionable data
- Don’t overcrowd – White space aids comprehension
- Don’t use 3D charts – They distort perception
- Don’t hide methodology – Document calculations
- Don’t ignore mobile – Ensure responsive design