marine-offshore-engineering

📁 vamseeachanta/workspace-hub 📅 Jan 24, 2026
0
总安装量
6
周安装量
安装命令
npx skills add https://github.com/vamseeachanta/workspace-hub --skill marine-offshore-engineering

Agent 安装分布

claude-code 4
antigravity 3
codex 3
cursor 3
opencode 2

Skill 文档

Marine and Offshore Engineering SME Skill

Comprehensive marine and offshore engineering knowledge for platform design, subsea systems, mooring, and regulatory compliance.

When to Use This Skill

Use this SME knowledge when:

  • Platform design – FPSOs, semi-submersibles, TLPs, SPARs
  • Subsea systems – Templates, manifolds, pipelines, umbilicals
  • Marine operations – Installation, commissioning, decommissioning
  • Regulatory compliance – DNV, API, ISO standards
  • Environmental loading – Wind, wave, current forces
  • Station-keeping – Mooring and dynamic positioning

Core Knowledge Areas

1. Platform Types

Fixed Platforms:

  • Jacket structures – Steel lattice framework, common in shallow water (<150m)
  • Jack-ups – Mobile platforms with retractable legs
  • Compliant towers – Slender structures for deeper water (300-900m)

Floating Platforms:

  • Semi-submersibles – Pontoons and columns, excellent motion characteristics
  • TLPs (Tension Leg Platforms) – Vertically moored, minimal vertical motion
  • SPARs – Deep draft cylindrical hull, good in ultra-deep water
  • FPSOs – Converted/purpose-built tankers for production and storage

Selection Criteria:

def select_platform_type(water_depth: float, field_life: float) -> str:
    """
    Platform type selection based on water depth.

    Args:
        water_depth: Water depth in meters
        field_life: Expected field life in years

    Returns:
        Recommended platform type
    """
    if water_depth < 150:
        return "Fixed platform (Jacket)"
    elif water_depth < 500:
        if field_life < 5:
            return "Jack-up (temporary)"
        else:
            return "Semi-submersible or FPSO"
    elif water_depth < 2000:
        return "Semi-submersible, SPAR, or FPSO"
    else:  # Ultra-deep water
        return "SPAR or FPSO"

2. Environmental Loading

Wind Loading:

  • API RP 2A: V = V_1hr * (z/10)^(1/7) # Wind profile
  • Force: F = 0.5 * ρ * V² * Cd * A

Wave Loading:

  • Airy (Linear) Wave Theory – Small amplitude waves
  • Stokes 2nd/3rd Order – Finite amplitude
  • Stream Function – Highly nonlinear waves

Current Loading:

import numpy as np

def calculate_current_force(
    velocity: float,  # m/s
    diameter: float,   # m
    length: float,     # m
    cd: float = 1.2    # Drag coefficient
) -> float:
    """
    Calculate current force on cylinder.

    Morison equation: F = 0.5 * ρ * V² * Cd * D * L

    Args:
        velocity: Current velocity
        diameter: Member diameter
        length: Member length
        cd: Drag coefficient

    Returns:
        Force in kN
    """
    rho = 1025  # kg/m³ (seawater)
    F = 0.5 * rho * velocity**2 * cd * diameter * length
    return F / 1000  # Convert to kN

3. Mooring Systems

Types:

  • Catenary – Chain/wire, relies on weight for restoring force
  • Taut – Polyester/steel wire, high pretension
  • Semi-taut – Hybrid configuration

Design Standards:

  • API RP 2SK – Stationkeeping Systems
  • DNV-OS-E301 – Position Mooring
  • ISO 19901-7 – Stationkeeping Systems

Safety Factors:

mooring_safety_factors:
  intact:
    uls: 1.67    # Ultimate Limit State
    als: 1.25    # Accidental Limit State
  damaged:
    uls: 1.25
    als: 1.05

  fatigue_design_factor: 10.0

4. Subsea Systems

Components:

  • Subsea trees – Wellhead control
  • Manifolds – Production gathering
  • Flowlines – Fluid transport
  • Risers – Platform connection
  • Umbilicals – Control/power/chemical injection

Pipeline Design:

def pipeline_wall_thickness(
    diameter: float,  # mm
    pressure: float,  # MPa
    yield_stress: float,  # MPa
    design_factor: float = 0.72  # API 5L
) -> float:
    """
    Calculate required pipeline wall thickness.

    Barlow's formula: t = P*D / (2*σ*F)

    Args:
        diameter: Outer diameter
        pressure: Design pressure
        yield_stress: Material yield stress
        design_factor: Design factor

    Returns:
        Wall thickness in mm
    """
    t = (pressure * diameter) / (2 * yield_stress * design_factor)

    # Add corrosion allowance
    corrosion_allowance = 3.0  # mm
    t_total = t + corrosion_allowance

    return t_total

5. Regulatory Framework

Classification Societies:

  • DNV (Det Norske Veritas) – Norwegian
  • ABS (American Bureau of Shipping) – American
  • Lloyd’s Register – British
  • Bureau Veritas – French

Key Standards:

standards:
  structural:
    - DNV-OS-C101: Design of Offshore Steel Structures
    - API RP 2A-WSD: Fixed Offshore Platforms
    - ISO 19902: Fixed Steel Structures

  floating:
    - DNV-OS-C103: Floating Structures
    - API RP 2FPS: Planning, Designing, Constructing Floating Production Systems

  mooring:
    - DNV-OS-E301: Position Mooring
    - API RP 2SK: Stationkeeping Systems
    - ISO 19901-7: Stationkeeping Systems

  subsea:
    - API 17D: Subsea Wellhead and Christmas Tree Equipment
    - API 17J: Unbonded Flexible Pipe
    - DNV-OS-F101: Submarine Pipeline Systems

  operations:
    - DNV-RP-H103: Modelling and Analysis of Marine Operations
    - ISO 19901-6: Marine Operations

6. Marine Operations

Installation Methods:

  • Heavy Lift – Crane vessels for topsides
  • Float-over – Deck floated over substructure
  • Pipelaying – S-lay, J-lay, reel-lay methods

Weather Windows:

def calculate_weather_window(
    sea_states: list,
    operation_limit: dict,
    duration_required: float  # hours
) -> list:
    """
    Identify suitable weather windows for marine operations.

    Args:
        sea_states: List of sea state forecasts
        operation_limit: Limits (Hs_max, Tp_range, current_max)
        duration_required: Required continuous calm period

    Returns:
        List of suitable time windows
    """
    windows = []
    current_window_start = None
    current_window_duration = 0

    for i, state in enumerate(sea_states):
        # Check if conditions are suitable
        suitable = (
            state['Hs'] <= operation_limit['Hs_max'] and
            state['current'] <= operation_limit['current_max']
        )

        if suitable:
            if current_window_start is None:
                current_window_start = i
            current_window_duration += state['time_step']

            # Check if window is long enough
            if current_window_duration >= duration_required:
                windows.append({
                    'start': current_window_start,
                    'duration': current_window_duration,
                    'conditions': 'suitable'
                })
        else:
            # Window ended
            current_window_start = None
            current_window_duration = 0

    return windows

Practical Applications

Application 1: FPSO Preliminary Design

fpso_design:
  vessel:
    hull:
      type: "conversion"  # or "newbuild"
      length_pp: 320  # m
      beam: 58  # m
      depth: 32  # m
      draft_design: 22  # m

    capacity:
      oil_storage: 2000000  # barrels
      production: 100000  # bopd
      water_injection: 200000  # bwpd

  topsides:
    modules:
      - production_manifold
      - separation
      - gas_compression
      - water_injection
      - utilities
    weight: 25000  # tonnes

  mooring:
    type: "spread"
    lines: 12
    configuration: "3x4"  # 3 bundles, 4 lines each

  design_codes:
    - ABS MODU
    - API RP 2FPS
    - DNV-OS-C103

Application 2: Environmental Load Calculation

def calculate_total_environmental_load(
    vessel_data: dict,
    environment: dict
) -> dict:
    """
    Calculate combined wind, wave, and current loads.

    Args:
        vessel_data: Vessel dimensions and coefficients
        environment: Environmental parameters

    Returns:
        Total forces and moments
    """
    import numpy as np

    # Wind force
    rho_air = 1.225  # kg/m³
    V_wind = environment['wind_speed']
    A_projected = vessel_data['frontal_area']
    Cd_wind = vessel_data['wind_drag_coef']
    F_wind = 0.5 * rho_air * V_wind**2 * Cd_wind * A_projected / 1000  # kN

    # Wave drift force (simplified)
    rho_water = 1025  # kg/m³
    Hs = environment['wave_Hs']
    F_wave_drift = 0.5 * rho_water * 9.81 * Hs**2 * vessel_data['waterplane_area'] / 1000

    # Current force
    V_current = environment['current_speed']
    A_underwater = vessel_data['underwater_area']
    Cd_current = vessel_data['current_drag_coef']
    F_current = 0.5 * rho_water * V_current**2 * Cd_current * A_underwater / 1000

    # Total horizontal force
    theta_wind = np.radians(environment['wind_direction'])
    theta_wave = np.radians(environment['wave_direction'])
    theta_current = np.radians(environment['current_direction'])

    Fx = (F_wind * np.cos(theta_wind) +
          F_wave_drift * np.cos(theta_wave) +
          F_current * np.cos(theta_current))

    Fy = (F_wind * np.sin(theta_wind) +
          F_wave_drift * np.sin(theta_wave) +
          F_current * np.sin(theta_current))

    return {
        'Fx_kN': Fx,
        'Fy_kN': Fy,
        'F_total_kN': np.sqrt(Fx**2 + Fy**2),
        'direction_deg': np.degrees(np.arctan2(Fy, Fx))
    }

Key Calculations

1. Buoyancy and Stability

def calculate_metacentric_height(
    displacement: float,  # tonnes
    waterplane_area: float,  # m²
    center_of_buoyancy_height: float,  # m
    center_of_gravity_height: float  # m
) -> float:
    """
    Calculate metacentric height (GM) for stability.

    GM = KB + BM - KG

    Where:
    - KB = Center of buoyancy above keel
    - BM = Metacentric radius = I/V
    - KG = Center of gravity above keel

    Args:
        displacement: Vessel displacement
        waterplane_area: Area at waterline
        center_of_buoyancy_height: KB
        center_of_gravity_height: KG

    Returns:
        Metacentric height in meters
    """
    rho = 1.025  # t/m³
    volume = displacement / rho

    # Second moment of area (simplified for rectangular waterplane)
    I = waterplane_area**1.5 / 12  # Approximation

    # Metacentric radius
    BM = I / volume

    # Metacentric height
    GM = center_of_buoyancy_height + BM - center_of_gravity_height

    return GM

2. Riser Stress

def calculate_riser_stress(
    top_tension: float,  # kN
    weight_per_length: float,  # kg/m
    water_depth: float,  # m
    diameter: float,  # mm
    wall_thickness: float  # mm
) -> dict:
    """
    Calculate riser stresses.

    Args:
        top_tension: Top tension
        weight_per_length: Riser weight in water
        water_depth: Water depth
        diameter: Outer diameter
        wall_thickness: Wall thickness

    Returns:
        Stress components
    """
    # Cross-sectional area
    D_outer = diameter / 1000  # Convert to m
    D_inner = D_outer - 2 * wall_thickness / 1000
    A = np.pi * (D_outer**2 - D_inner**2) / 4  # m²

    # Effective tension at bottom
    w = weight_per_length * 9.81 / 1000  # kN/m
    bottom_tension = top_tension - w * water_depth

    # Axial stress (top)
    sigma_axial_top = top_tension * 1000 / (A * 1e6)  # MPa

    # Axial stress (bottom)
    sigma_axial_bottom = bottom_tension * 1000 / (A * 1e6)  # MPa

    return {
        'top_stress_MPa': sigma_axial_top,
        'bottom_stress_MPa': sigma_axial_bottom,
        'bottom_tension_kN': bottom_tension
    }

Design Process

Typical Project Phases:

  1. Feasibility Study

    • Concept selection
    • Preliminary sizing
    • Cost estimation
  2. FEED (Front End Engineering Design)

    • Detailed concept
    • Specifications
    • Major equipment selection
  3. Detailed Engineering

    • Construction drawings
    • Procurement
    • Fabrication specifications
  4. Fabrication & Installation

    • Yard fabrication
    • Loadout and seafastening
    • Offshore installation
  5. Commissioning & Operations

    • System testing
    • Production startup
    • Life of field operations

Resources


Use this skill for all marine and offshore engineering design decisions in DigitalModel!