mem-search
npx skills add https://github.com/thedotmack/claude-mem --skill mem-search
Agent 安装分布
Skill 文档
Memory Search
Search past work across all sessions. Simple workflow: search -> filter -> fetch.
When to Use
Use when users ask about PREVIOUS sessions (not current conversation):
- “Did we already fix this?”
- “How did we solve X last time?”
- “What happened last week?”
3-Layer Workflow (ALWAYS Follow)
NEVER fetch full details without filtering first. 10x token savings.
Step 1: Search – Get Index with IDs
Use the search MCP tool:
search(query="authentication", limit=20, project="my-project")
Returns: Table with IDs, timestamps, types, titles (~50-100 tokens/result)
| ID | Time | T | Title | Read |
|----|------|---|-------|------|
| #11131 | 3:48 PM | ð£ | Added JWT authentication | ~75 |
| #10942 | 2:15 PM | ð´ | Fixed auth token expiration | ~50 |
Parameters:
query(string) – Search termlimit(number) – Max results, default 20, max 100project(string) – Project name filtertype(string, optional) – “observations”, “sessions”, or “prompts”obs_type(string, optional) – Comma-separated: bugfix, feature, decision, discovery, changedateStart(string, optional) – YYYY-MM-DD or epoch msdateEnd(string, optional) – YYYY-MM-DD or epoch msoffset(number, optional) – Skip N resultsorderBy(string, optional) – “date_desc” (default), “date_asc”, “relevance”
Step 2: Timeline – Get Context Around Interesting Results
Use the timeline MCP tool:
timeline(anchor=11131, depth_before=3, depth_after=3, project="my-project")
Or find anchor automatically from query:
timeline(query="authentication", depth_before=3, depth_after=3, project="my-project")
Returns: depth_before + 1 + depth_after items in chronological order with observations, sessions, and prompts interleaved around the anchor.
Parameters:
anchor(number, optional) – Observation ID to center aroundquery(string, optional) – Find anchor automatically if anchor not provideddepth_before(number, optional) – Items before anchor, default 5, max 20depth_after(number, optional) – Items after anchor, default 5, max 20project(string) – Project name filter
Step 3: Fetch – Get Full Details ONLY for Filtered IDs
Review titles from Step 1 and context from Step 2. Pick relevant IDs. Discard the rest.
Use the get_observations MCP tool:
get_observations(ids=[11131, 10942])
ALWAYS use get_observations for 2+ observations – single request vs N requests.
Parameters:
ids(array of numbers, required) – Observation IDs to fetchorderBy(string, optional) – “date_desc” (default), “date_asc”limit(number, optional) – Max observations to returnproject(string, optional) – Project name filter
Returns: Complete observation objects with title, subtitle, narrative, facts, concepts, files (~500-1000 tokens each)
Saving Memories
Use the save_memory MCP tool to store manual observations:
save_memory(text="Important discovery about the auth system", title="Auth Architecture", project="my-project")
Parameters:
text(string, required) – Content to remembertitle(string, optional) – Short title, auto-generated if omittedproject(string, optional) – Project name, defaults to “claude-mem”
Examples
Find recent bug fixes:
search(query="bug", type="observations", obs_type="bugfix", limit=20, project="my-project")
Find what happened last week:
search(type="observations", dateStart="2025-11-11", limit=20, project="my-project")
Understand context around a discovery:
timeline(anchor=11131, depth_before=5, depth_after=5, project="my-project")
Batch fetch details:
get_observations(ids=[11131, 10942, 10855], orderBy="date_desc")
Why This Workflow?
- Search index: ~50-100 tokens per result
- Full observation: ~500-1000 tokens each
- Batch fetch: 1 HTTP request vs N individual requests
- 10x token savings by filtering before fetching