mem-search

📁 thedotmack/claude-mem 📅 6 days ago
65
总安装量
65
周安装量
#3383
全站排名
安装命令
npx skills add https://github.com/thedotmack/claude-mem --skill mem-search

Agent 安装分布

opencode 61
gemini-cli 54
codex 54
claude-code 50
github-copilot 39
kimi-cli 30

Skill 文档

Memory Search

Search past work across all sessions. Simple workflow: search -> filter -> fetch.

When to Use

Use when users ask about PREVIOUS sessions (not current conversation):

  • “Did we already fix this?”
  • “How did we solve X last time?”
  • “What happened last week?”

3-Layer Workflow (ALWAYS Follow)

NEVER fetch full details without filtering first. 10x token savings.

Step 1: Search – Get Index with IDs

Use the search MCP tool:

search(query="authentication", limit=20, project="my-project")

Returns: Table with IDs, timestamps, types, titles (~50-100 tokens/result)

| ID | Time | T | Title | Read |
|----|------|---|-------|------|
| #11131 | 3:48 PM | 🟣 | Added JWT authentication | ~75 |
| #10942 | 2:15 PM | 🔴 | Fixed auth token expiration | ~50 |

Parameters:

  • query (string) – Search term
  • limit (number) – Max results, default 20, max 100
  • project (string) – Project name filter
  • type (string, optional) – “observations”, “sessions”, or “prompts”
  • obs_type (string, optional) – Comma-separated: bugfix, feature, decision, discovery, change
  • dateStart (string, optional) – YYYY-MM-DD or epoch ms
  • dateEnd (string, optional) – YYYY-MM-DD or epoch ms
  • offset (number, optional) – Skip N results
  • orderBy (string, optional) – “date_desc” (default), “date_asc”, “relevance”

Step 2: Timeline – Get Context Around Interesting Results

Use the timeline MCP tool:

timeline(anchor=11131, depth_before=3, depth_after=3, project="my-project")

Or find anchor automatically from query:

timeline(query="authentication", depth_before=3, depth_after=3, project="my-project")

Returns: depth_before + 1 + depth_after items in chronological order with observations, sessions, and prompts interleaved around the anchor.

Parameters:

  • anchor (number, optional) – Observation ID to center around
  • query (string, optional) – Find anchor automatically if anchor not provided
  • depth_before (number, optional) – Items before anchor, default 5, max 20
  • depth_after (number, optional) – Items after anchor, default 5, max 20
  • project (string) – Project name filter

Step 3: Fetch – Get Full Details ONLY for Filtered IDs

Review titles from Step 1 and context from Step 2. Pick relevant IDs. Discard the rest.

Use the get_observations MCP tool:

get_observations(ids=[11131, 10942])

ALWAYS use get_observations for 2+ observations – single request vs N requests.

Parameters:

  • ids (array of numbers, required) – Observation IDs to fetch
  • orderBy (string, optional) – “date_desc” (default), “date_asc”
  • limit (number, optional) – Max observations to return
  • project (string, optional) – Project name filter

Returns: Complete observation objects with title, subtitle, narrative, facts, concepts, files (~500-1000 tokens each)

Saving Memories

Use the save_memory MCP tool to store manual observations:

save_memory(text="Important discovery about the auth system", title="Auth Architecture", project="my-project")

Parameters:

  • text (string, required) – Content to remember
  • title (string, optional) – Short title, auto-generated if omitted
  • project (string, optional) – Project name, defaults to “claude-mem”

Examples

Find recent bug fixes:

search(query="bug", type="observations", obs_type="bugfix", limit=20, project="my-project")

Find what happened last week:

search(type="observations", dateStart="2025-11-11", limit=20, project="my-project")

Understand context around a discovery:

timeline(anchor=11131, depth_before=5, depth_after=5, project="my-project")

Batch fetch details:

get_observations(ids=[11131, 10942, 10855], orderBy="date_desc")

Why This Workflow?

  • Search index: ~50-100 tokens per result
  • Full observation: ~500-1000 tokens each
  • Batch fetch: 1 HTTP request vs N individual requests
  • 10x token savings by filtering before fetching