research
128
总安装量
128
周安装量
#1865
全站排名
安装命令
npx skills add https://github.com/tavily-ai/tavily-plugins --skill research
Agent 安装分布
claude-code
120
opencode
73
gemini-cli
72
codex
66
cursor
66
antigravity
58
Skill 文档
Research Skill
Conduct comprehensive research on any topic with automatic source gathering, analysis, and response generation with citations.
Prerequisites
Tavily API Key Required – Get your key at https://tavily.com
Add to ~/.claude/settings.json:
{
"env": {
"TAVILY_API_KEY": "tvly-your-api-key-here"
}
}
Quick Start
Tip: Research can take 30-120 seconds. Press Ctrl+B to run in the background.
Using the Script
./scripts/research.sh '<json>' [output_file]
Examples:
# Basic research
./scripts/research.sh '{"input": "quantum computing trends"}'
# With pro model for comprehensive analysis
./scripts/research.sh '{"input": "AI agents comparison", "model": "pro"}'
# Save to file
./scripts/research.sh '{"input": "market analysis for EVs", "model": "pro"}' ./ev-report.md
# With custom citation format
./scripts/research.sh '{"input": "climate change impacts", "model": "mini", "citation_format": "apa"}'
# With structured output schema
./scripts/research.sh '{"input": "fintech startups 2025", "model": "pro", "output_schema": {"properties": {"summary": {"type": "string"}, "companies": {"type": "array", "items": {"type": "string"}}}, "required": ["summary"]}}'
Basic Research
curl --request POST \
--url https://api.tavily.com/research \
--header "Authorization: Bearer $TAVILY_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"input": "Latest developments in quantum computing",
"model": "mini",
"stream": false,
"citation_format": "numbered"
}'
Note: Streaming is disabled for token management. The call waits until research completes and returns clean JSON.
With Custom Schema
curl --request POST \
--url https://api.tavily.com/research \
--header "Authorization: Bearer $TAVILY_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"input": "Electric vehicle market analysis",
"model": "pro",
"stream": false,
"citation_format": "numbered",
"output_schema": {
"properties": {
"market_overview": {
"type": "string",
"description": "2-3 sentence overview of the market"
},
"key_players": {
"type": "array",
"description": "Major companies in this market",
"items": {
"type": "object",
"properties": {
"name": {"type": "string", "description": "Company name"},
"market_share": {"type": "string", "description": "Approximate market share"}
},
"required": ["name"]
}
}
},
"required": ["market_overview", "key_players"]
}
}'
API Reference
Endpoint
POST https://api.tavily.com/research
Headers
| Header | Value |
|---|---|
Authorization |
Bearer <TAVILY_API_KEY> |
Content-Type |
application/json |
Request Body
| Field | Type | Default | Description |
|---|---|---|---|
input |
string | Required | Research topic or question |
model |
string | "mini" |
Model: mini, pro, auto |
stream |
boolean | false |
Streaming disabled for token management |
output_schema |
object | null | JSON schema for structured output |
citation_format |
string | "numbered" |
Citation format: numbered, mla, apa, chicago |
Response Format (JSON)
With stream: false, the response is clean JSON:
{
"content": "# Research Results\n\n...",
"sources": [{"url": "https://...", "title": "Source Title"}],
"response_time": 45.2
}
Model Selection
Rule of thumb: “what does X do?” -> mini. “X vs Y vs Z” or “best way to…” -> pro.
| Model | Use Case | Speed |
|---|---|---|
mini |
Single topic, targeted research | ~30s |
pro |
Comprehensive multi-angle analysis | ~60-120s |
auto |
API chooses based on complexity | Varies |
Schema Usage
Schemas make output structured and predictable. Every property MUST include both type and description.
{
"properties": {
"summary": {
"type": "string",
"description": "2-3 sentence executive summary"
},
"key_points": {
"type": "array",
"description": "Main takeaways",
"items": {"type": "string"}
}
},
"required": ["summary", "key_points"]
}
Examples
Market Research
curl --request POST \
--url https://api.tavily.com/research \
--header "Authorization: Bearer $TAVILY_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"input": "Fintech startup landscape 2025",
"model": "pro",
"stream": false,
"citation_format": "numbered",
"output_schema": {
"properties": {
"market_overview": {"type": "string", "description": "Executive summary of fintech market"},
"top_startups": {
"type": "array",
"description": "Notable fintech startups",
"items": {
"type": "object",
"properties": {
"name": {"type": "string", "description": "Startup name"},
"focus": {"type": "string", "description": "Primary business focus"},
"funding": {"type": "string", "description": "Total funding raised"}
},
"required": ["name", "focus"]
}
},
"trends": {"type": "array", "description": "Key market trends", "items": {"type": "string"}}
},
"required": ["market_overview", "top_startups"]
}
}'
Technical Comparison
curl --request POST \
--url https://api.tavily.com/research \
--header "Authorization: Bearer $TAVILY_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"input": "LangGraph vs CrewAI for multi-agent systems",
"model": "pro",
"stream": false,
"citation_format": "mla"
}'
Quick Overview
curl --request POST \
--url https://api.tavily.com/research \
--header "Authorization: Bearer $TAVILY_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"input": "What is retrieval augmented generation?",
"model": "mini",
"stream": false
}'