deal-hunt
52
总安装量
52
周安装量
#4093
全站排名
安装命令
npx skills add https://github.com/tavily-ai/tavily-plugins --skill deal-hunt
Agent 安装分布
claude-code
50
codex
28
gemini-cli
26
opencode
25
cursor
23
antigravity
19
Skill 文档
Deal Hunt
Search for deals on any product. Returns raw Tavily search results – Claude analyzes them to find the best prices.
Prerequisites
Tavily API Key Required – Get your key at https://tavily.com
Add to ~/.claude/settings.json:
{
"env": {
"TAVILY_API_KEY": "tvly-your-api-key-here"
}
}
Usage
# Search entire web (default - no domain filter)
python scripts/deal_hunt.py "Dyson V15"
# Multi-query search (max 3, runs in parallel, deduplicates results)
python scripts/deal_hunt.py "AirPods Pro" --queries "AirPods Pro deal,AirPods Pro coupon,AirPods Pro discount"
# Limit to specific sites
python scripts/deal_hunt.py "MacBook Air" --domains amazon.com,walmart.com,bestbuy.com
# Custom single query
python scripts/deal_hunt.py "Nintendo Switch" --query "Nintendo Switch OLED bundle deal"
# Fresh deals only
python scripts/deal_hunt.py "PS5" --time-range day
CLI Parameters
| Option | Short | Default | Description |
|---|---|---|---|
product |
– | Required | Product name |
--query |
-q |
{product} deal price |
Single custom search query |
--queries |
None | Comma-separated queries (max 3), runs in parallel with dedup | |
--domains |
-d |
None (search all) | Optionally limit to specific domains |
--max-results |
-n |
10 | Number of results per query |
--time-range |
-t |
week | day, week, month, year, none |
--search-depth |
-s |
advanced | basic, advanced, fast, ultrafast |
Output
Returns JSON with results:
{
"meta": {
"product": "AirPods Pro",
"queries": ["AirPods Pro deal", "AirPods Pro coupon"],
"domains": null,
"time_range": "week",
"search_time": "2026-01-13T...",
"total_results": 15
},
"results": [
{
"title": "...",
"url": "https://...",
"content": "...",
"score": 0.95
}
]
}
When using --queries, results are deduplicated by URL (highest score kept, content merged).
Output Schema for Analysis
After running the search, Claude should analyze results and structure findings as:
{
"product": "Sony WH-1000XM5",
"best_deal": {
"price": 279.99,
"original_price": 399.99,
"discount": "30% off",
"retailer": "Amazon",
"url": "https://amazon.com/...",
"condition": "new",
"in_stock": true
},
"all_deals": [
{
"price": 279.99,
"retailer": "Amazon",
"url": "https://...",
"notes": "Prime shipping"
},
{
"price": 169.99,
"retailer": "eBay via Slickdeals",
"url": "https://...",
"notes": "Refurbished"
}
],
"coupons": [
{
"code": "AUDIO10",
"discount": "10% off",
"retailer": "Best Buy",
"expires": "2026-01-31"
}
],
"summary": "Best new price is $279.99 at Amazon (30% off). Refurbished available for $169.99."
}
Claude extracts prices from content, compares deals, and presents the best options with purchase links.