research
783
总安装量
796
周安装量
#433
全站排名
安装命令
npx skills add https://github.com/tavily-ai/skills --skill research
Agent 安装分布
opencode
518
claude-code
510
gemini-cli
434
codex
409
github-copilot
307
Skill 文档
Research Skill
Conduct comprehensive research on any topic with automatic source gathering, analysis, and response generation with citations.
Prerequisites
Tavily API Key Required – Get your key at https://tavily.com
Add to ~/.claude/settings.json:
{
"env": {
"TAVILY_API_KEY": "tvly-your-api-key-here"
}
}
Quick Start
Tip: Research can take 30-120 seconds. Press Ctrl+B to run in the background.
Using the Script
./scripts/research.sh '<json>' [output_file]
Examples:
# Basic research
./scripts/research.sh '{"input": "quantum computing trends"}'
# With pro model for comprehensive analysis
./scripts/research.sh '{"input": "AI agents comparison", "model": "pro"}'
# Save to file
./scripts/research.sh '{"input": "market analysis for EVs", "model": "pro"}' ./ev-report.md
# With custom citation format
./scripts/research.sh '{"input": "climate change impacts", "model": "mini", "citation_format": "apa"}'
# With structured output schema
./scripts/research.sh '{"input": "fintech startups 2025", "model": "pro", "output_schema": {"properties": {"summary": {"type": "string"}, "companies": {"type": "array", "items": {"type": "string"}}}, "required": ["summary"]}}'
Basic Research
curl --request POST \
--url https://api.tavily.com/research \
--header "Authorization: Bearer $TAVILY_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"input": "Latest developments in quantum computing",
"model": "mini",
"stream": false,
"citation_format": "numbered"
}'
Note: Streaming is disabled for token management. The call waits until research completes and returns clean JSON.
With Custom Schema
curl --request POST \
--url https://api.tavily.com/research \
--header "Authorization: Bearer $TAVILY_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"input": "Electric vehicle market analysis",
"model": "pro",
"stream": false,
"citation_format": "numbered",
"output_schema": {
"properties": {
"market_overview": {
"type": "string",
"description": "2-3 sentence overview of the market"
},
"key_players": {
"type": "array",
"description": "Major companies in this market",
"items": {
"type": "object",
"properties": {
"name": {"type": "string", "description": "Company name"},
"market_share": {"type": "string", "description": "Approximate market share"}
},
"required": ["name"]
}
}
},
"required": ["market_overview", "key_players"]
}
}'
API Reference
Endpoint
POST https://api.tavily.com/research
Headers
| Header | Value |
|---|---|
Authorization |
Bearer <TAVILY_API_KEY> |
Content-Type |
application/json |
Request Body
| Field | Type | Default | Description |
|---|---|---|---|
input |
string | Required | Research topic or question |
model |
string | "mini" |
Model: mini, pro, auto |
stream |
boolean | false |
Streaming disabled for token management |
output_schema |
object | null | JSON schema for structured output |
citation_format |
string | "numbered" |
Citation format: numbered, mla, apa, chicago |
Response Format (JSON)
With stream: false, the response is clean JSON:
{
"content": "# Research Results\n\n...",
"sources": [{"url": "https://...", "title": "Source Title"}],
"response_time": 45.2
}
Model Selection
Rule of thumb: “what does X do?” -> mini. “X vs Y vs Z” or “best way to…” -> pro.
| Model | Use Case | Speed |
|---|---|---|
mini |
Single topic, targeted research | ~30s |
pro |
Comprehensive multi-angle analysis | ~60-120s |
auto |
API chooses based on complexity | Varies |
Schema Usage
Schemas make output structured and predictable. Every property MUST include both type and description.
{
"properties": {
"summary": {
"type": "string",
"description": "2-3 sentence executive summary"
},
"key_points": {
"type": "array",
"description": "Main takeaways",
"items": {"type": "string"}
}
},
"required": ["summary", "key_points"]
}
Examples
Market Research
curl --request POST \
--url https://api.tavily.com/research \
--header "Authorization: Bearer $TAVILY_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"input": "Fintech startup landscape 2025",
"model": "pro",
"stream": false,
"citation_format": "numbered",
"output_schema": {
"properties": {
"market_overview": {"type": "string", "description": "Executive summary of fintech market"},
"top_startups": {
"type": "array",
"description": "Notable fintech startups",
"items": {
"type": "object",
"properties": {
"name": {"type": "string", "description": "Startup name"},
"focus": {"type": "string", "description": "Primary business focus"},
"funding": {"type": "string", "description": "Total funding raised"}
},
"required": ["name", "focus"]
}
},
"trends": {"type": "array", "description": "Key market trends", "items": {"type": "string"}}
},
"required": ["market_overview", "top_startups"]
}
}'
Technical Comparison
curl --request POST \
--url https://api.tavily.com/research \
--header "Authorization: Bearer $TAVILY_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"input": "LangGraph vs CrewAI for multi-agent systems",
"model": "pro",
"stream": false,
"citation_format": "mla"
}'
Quick Overview
curl --request POST \
--url https://api.tavily.com/research \
--header "Authorization: Bearer $TAVILY_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"input": "What is retrieval augmented generation?",
"model": "mini",
"stream": false
}'