kling-ai

📁 supercent-io/skills-template 📅 Jan 24, 2026
47
总安装量
47
周安装量
#4531
全站排名
安装命令
npx skills add https://github.com/supercent-io/skills-template --skill kling-ai

Agent 安装分布

claude-code 37
opencode 35
gemini-cli 31
codex 31
antigravity 24
cursor 23

Skill 文档

Kling AI – Image & Video Generation

When to use this skill

  • Generating images from text prompts (Text-to-Image)
  • Creating videos from text descriptions (Text-to-Video)
  • Animating static images into videos (Image-to-Video)
  • Producing high-quality AI video content (up to 1080p, 30fps)
  • Building applications with AI-generated media

Instructions

Step 1: Authentication Setup

Kling AI uses JWT (JSON Web Tokens) for authentication.

Required credentials:

  • Access Key (AK) – Public identifier
  • Secret Key (SK) – Private signing key

Get credentials: app.klingai.com/global/dev

Generate JWT token (Python):

import jwt
import time

def generate_kling_token(access_key: str, secret_key: str) -> str:
    """Generate JWT token for Kling AI API."""
    headers = {
        "alg": "HS256",
        "typ": "JWT"
    }
    payload = {
        "iss": access_key,
        "exp": int(time.time()) + 1800,  # 30 minutes
        "nbf": int(time.time()) - 5
    }
    return jwt.encode(payload, secret_key, algorithm="HS256", headers=headers)

# Usage
access_key = "YOUR_ACCESS_KEY"
secret_key = "YOUR_SECRET_KEY"
token = generate_kling_token(access_key, secret_key)

Headers for all requests:

headers = {
    "Authorization": f"Bearer {token}",
    "Content-Type": "application/json"
}

Step 2: Text-to-Image Generation

Endpoint: POST https://api.klingai.com/v1/images/generations

Request:

import requests

def generate_image(prompt: str, token: str) -> dict:
    """Generate image from text prompt."""
    url = "https://api.klingai.com/v1/images/generations"
    headers = {
        "Authorization": f"Bearer {token}",
        "Content-Type": "application/json"
    }
    data = {
        "model_name": "kling-v1",
        "prompt": prompt,
        "negative_prompt": "blur, distortion, low quality",
        "n": 1,
        "aspect_ratio": "16:9",  # 16:9, 9:16, 1:1, 4:3, 3:4, 3:2, 2:3
        "image_fidelity": 0.5,   # 0-1
        "callback_url": ""       # Optional webhook
    }
    response = requests.post(url, json=data, headers=headers)
    return response.json()

# Usage
result = generate_image(
    prompt="A futuristic cityscape at sunset, cinematic lighting, ultra-realistic",
    token=token
)
task_id = result["data"]["task_id"]

Parameters:

Parameter Type Required Description
model_name string Yes kling-v1
prompt string Yes Image description (max 500 chars)
negative_prompt string No Elements to avoid
n integer No Number of images (1-9, default 1)
aspect_ratio string No 16:9, 9:16, 1:1, 4:3, 3:4
image_fidelity float No 0-1, default 0.5
callback_url string No Webhook for completion

Step 3: Text-to-Video Generation

Endpoint: POST https://api.klingai.com/v1/videos/text2video

Request:

def generate_video_from_text(prompt: str, token: str, duration: int = 5) -> dict:
    """Generate video from text prompt."""
    url = "https://api.klingai.com/v1/videos/text2video"
    headers = {
        "Authorization": f"Bearer {token}",
        "Content-Type": "application/json"
    }
    data = {
        "model_name": "kling-v1",           # kling-v1, kling-v1-5, kling-v1-6
        "prompt": prompt,
        "negative_prompt": "blur, distortion",
        "duration": duration,                # 5 or 10 seconds
        "aspect_ratio": "16:9",             # 16:9, 9:16, 1:1
        "mode": "std",                       # std (standard) or pro
        "cfg_scale": 0.5,                    # 0-1
        "camera_control": {
            "type": "simple",
            "config": {
                "horizontal": 0,             # -10 to 10
                "vertical": 0,               # -10 to 10
                "zoom": 0,                   # -10 to 10
                "tilt": 0,                   # -10 to 10
                "pan": 0,                    # -10 to 10
                "roll": 0                    # -10 to 10
            }
        },
        "callback_url": ""
    }
    response = requests.post(url, json=data, headers=headers)
    return response.json()

# Usage
result = generate_video_from_text(
    prompt="A dragon flying over mountains at sunset, epic cinematic shot",
    token=token,
    duration=5
)
task_id = result["data"]["task_id"]

Camera control presets:

camera_presets = {
    "zoom_in": {"zoom": 5},
    "zoom_out": {"zoom": -5},
    "pan_left": {"horizontal": -5},
    "pan_right": {"horizontal": 5},
    "tilt_up": {"vertical": 5},
    "tilt_down": {"vertical": -5},
    "dolly_forward": {"zoom": 3, "vertical": 2},
    "orbit_right": {"horizontal": 5, "pan": 3}
}

Step 4: Image-to-Video Generation

Endpoint: POST https://api.klingai.com/v1/videos/image2video

Request:

import base64

def generate_video_from_image(
    image_path: str,
    prompt: str,
    token: str,
    duration: int = 5
) -> dict:
    """Animate an image into a video."""
    url = "https://api.klingai.com/v1/videos/image2video"
    headers = {
        "Authorization": f"Bearer {token}",
        "Content-Type": "application/json"
    }
    
    # Load and encode image
    with open(image_path, "rb") as f:
        image_base64 = base64.b64encode(f.read()).decode()
    
    data = {
        "model_name": "kling-v1",
        "image": image_base64,              # Base64 or URL
        "image_tail": "",                   # Optional: end frame image
        "prompt": prompt,
        "negative_prompt": "blur, distortion",
        "duration": duration,
        "mode": "std",
        "cfg_scale": 0.5,
        "callback_url": ""
    }
    response = requests.post(url, json=data, headers=headers)
    return response.json()

# Usage
result = generate_video_from_image(
    image_path="portrait.jpg",
    prompt="Person smiling and waving at camera",
    token=token
)

With URL instead of base64:

data = {
    "model_name": "kling-v1",
    "image": "https://example.com/image.jpg",
    "prompt": "The subject slowly turns their head",
    "duration": 5
}

Step 5: Check Task Status (Polling)

All generation tasks are asynchronous. Poll for completion:

Endpoint: GET https://api.klingai.com/v1/videos/text2video/{task_id}

import time

def poll_task_status(task_id: str, token: str, task_type: str = "text2video") -> dict:
    """Poll task status until completion."""
    url = f"https://api.klingai.com/v1/videos/{task_type}/{task_id}"
    headers = {"Authorization": f"Bearer {token}"}
    
    while True:
        response = requests.get(url, headers=headers)
        result = response.json()
        status = result["data"]["task_status"]
        
        print(f"Status: {status}")
        
        if status == "succeed":
            return result
        elif status == "failed":
            raise Exception(f"Task failed: {result['data'].get('task_status_msg')}")
        
        time.sleep(10)  # Poll every 10 seconds

# Usage
result = poll_task_status(task_id, token)
video_url = result["data"]["task_result"]["videos"][0]["url"]
print(f"Video URL: {video_url}")

Task status values:

Status Description
submitted Task queued
processing Currently generating
succeed Completed successfully
failed Generation failed

Step 6: Download Generated Media

def download_media(url: str, output_path: str) -> None:
    """Download generated image or video."""
    response = requests.get(url, stream=True)
    with open(output_path, "wb") as f:
        for chunk in response.iter_content(chunk_size=8192):
            f.write(chunk)
    print(f"Downloaded: {output_path}")

# Usage
download_media(video_url, "output.mp4")

Examples

Example 1: Complete Text-to-Video Workflow

import jwt
import time
import requests

class KlingClient:
    BASE_URL = "https://api.klingai.com/v1"
    
    def __init__(self, access_key: str, secret_key: str):
        self.access_key = access_key
        self.secret_key = secret_key
    
    def _get_token(self) -> str:
        headers = {"alg": "HS256", "typ": "JWT"}
        payload = {
            "iss": self.access_key,
            "exp": int(time.time()) + 1800,
            "nbf": int(time.time()) - 5
        }
        return jwt.encode(payload, self.secret_key, algorithm="HS256", headers=headers)
    
    def _headers(self) -> dict:
        return {
            "Authorization": f"Bearer {self._get_token()}",
            "Content-Type": "application/json"
        }
    
    def text_to_video(self, prompt: str, duration: int = 5, mode: str = "std") -> str:
        """Generate video and return URL."""
        # Create task
        response = requests.post(
            f"{self.BASE_URL}/videos/text2video",
            json={
                "model_name": "kling-v1",
                "prompt": prompt,
                "duration": duration,
                "mode": mode,
                "aspect_ratio": "16:9"
            },
            headers=self._headers()
        )
        task_id = response.json()["data"]["task_id"]
        
        # Poll for completion
        while True:
            result = requests.get(
                f"{self.BASE_URL}/videos/text2video/{task_id}",
                headers=self._headers()
            ).json()
            
            status = result["data"]["task_status"]
            if status == "succeed":
                return result["data"]["task_result"]["videos"][0]["url"]
            elif status == "failed":
                raise Exception("Generation failed")
            
            time.sleep(10)

# Usage
client = KlingClient("YOUR_ACCESS_KEY", "YOUR_SECRET_KEY")
video_url = client.text_to_video(
    prompt="A majestic eagle soaring through clouds at golden hour",
    duration=5
)
print(f"Generated video: {video_url}")

Example 2: Batch Image Generation

def batch_generate_images(prompts: list, token: str) -> list:
    """Generate multiple images in parallel."""
    import concurrent.futures
    
    results = []
    
    with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
        futures = {
            executor.submit(generate_image, prompt, token): prompt
            for prompt in prompts
        }
        
        for future in concurrent.futures.as_completed(futures):
            prompt = futures[future]
            try:
                result = future.result()
                results.append({"prompt": prompt, "task_id": result["data"]["task_id"]})
            except Exception as e:
                results.append({"prompt": prompt, "error": str(e)})
    
    return results

# Usage
prompts = [
    "A serene Japanese garden with cherry blossoms",
    "A cyberpunk street scene at night",
    "An underwater coral reef teeming with life"
]
tasks = batch_generate_images(prompts, token)

Example 3: Image-to-Video with Motion Control

def animate_portrait(image_url: str, token: str) -> str:
    """Animate a portrait with subtle motion."""
    url = "https://api.klingai.com/v1/videos/image2video"
    
    response = requests.post(
        url,
        json={
            "model_name": "kling-v1",
            "image": image_url,
            "prompt": "Subtle head movement, natural blinking, gentle smile",
            "negative_prompt": "distortion, unnatural movement, glitch",
            "duration": 5,
            "mode": "pro",  # Higher quality for portraits
            "cfg_scale": 0.7
        },
        headers={
            "Authorization": f"Bearer {token}",
            "Content-Type": "application/json"
        }
    )
    
    task_id = response.json()["data"]["task_id"]
    return poll_task_status(task_id, token, "image2video")

# Usage
result = animate_portrait("https://example.com/portrait.jpg", token)

Example 4: Video with Camera Movement

def cinematic_video(prompt: str, camera_motion: str, token: str) -> str:
    """Generate video with specific camera movement."""
    camera_configs = {
        "epic_reveal": {"zoom": -5, "vertical": 3},
        "dramatic_push": {"zoom": 5},
        "orbit_subject": {"horizontal": 7, "pan": 3},
        "crane_up": {"vertical": 5, "zoom": 2},
        "dolly_back": {"zoom": -3, "horizontal": 2}
    }
    
    config = camera_configs.get(camera_motion, {})
    
    response = requests.post(
        "https://api.klingai.com/v1/videos/text2video",
        json={
            "model_name": "kling-v1-6",
            "prompt": prompt,
            "duration": 10,
            "mode": "pro",
            "aspect_ratio": "16:9",
            "camera_control": {
                "type": "simple",
                "config": {
                    "horizontal": config.get("horizontal", 0),
                    "vertical": config.get("vertical", 0),
                    "zoom": config.get("zoom", 0),
                    "tilt": config.get("tilt", 0),
                    "pan": config.get("pan", 0),
                    "roll": config.get("roll", 0)
                }
            }
        },
        headers={
            "Authorization": f"Bearer {token}",
            "Content-Type": "application/json"
        }
    )
    
    task_id = response.json()["data"]["task_id"]
    return poll_task_status(task_id, token)

# Usage
video_url = cinematic_video(
    prompt="Ancient temple emerging from jungle mist",
    camera_motion="epic_reveal",
    token=token
)

Model Comparison

Video Models

Model Resolution Duration Quality Cost
kling-v1 (std) 720p 5-10s Good $
kling-v1 (pro) 1080p 5-10s Better $$
kling-v1-5 (std) 720p 5-10s Good $
kling-v1-5 (pro) 1080p 5-10s Better $$
kling-v1-6 (std) 720p 5-10s Great $$
kling-v1-6 (pro) 1080p 5-10s Excellent $$$

Image Models

Model Max Resolution Quality
kling-v1 1024×1024 Standard
kling-v1 (2k) 2048×2048 High

Pricing Reference

Feature Standard Mode Pro Mode
5s video ~$0.14 ~$0.49
10s video ~$0.28 ~$0.98
Image ~$0.01

Best practices

  1. Prompt quality: Be specific and descriptive. Include style keywords like “cinematic”, “photorealistic”, “4K”
  2. Negative prompts: Always include to avoid common artifacts: “blur, distortion, low quality, watermark”
  3. Start with standard mode: Test with std mode first, upgrade to pro for final output
  4. Use 5-second videos: More cost-effective for testing; use 10s only when needed
  5. Handle rate limits: Implement exponential backoff for retries
  6. Cache tokens: Reuse JWT tokens within their validity period (30 min recommended)
  7. Webhook for production: Use callback_url instead of polling in production environments

Common pitfalls

  • Token expiration: JWT tokens expire. Regenerate before making requests if expired
  • Prompt length: Text-to-image max 500 chars, text-to-video max 2500 chars
  • Image format: Image-to-video supports JPEG, PNG. Max size varies by model
  • Polling too fast: Don’t poll faster than every 5-10 seconds to avoid rate limits
  • Missing negative prompt: Always include to prevent common artifacts
  • Wrong aspect ratio: Match aspect ratio to your use case (16:9 for landscape, 9:16 for portrait)

Error Handling

class KlingAPIError(Exception):
    pass

def handle_kling_response(response: requests.Response) -> dict:
    """Handle API response with proper error handling."""
    data = response.json()
    
    if response.status_code == 401:
        raise KlingAPIError("Authentication failed. Check your credentials.")
    elif response.status_code == 429:
        raise KlingAPIError("Rate limit exceeded. Wait and retry.")
    elif response.status_code >= 400:
        error_msg = data.get("message", "Unknown error")
        raise KlingAPIError(f"API Error: {error_msg}")
    
    if data.get("code") != 0:
        raise KlingAPIError(f"Request failed: {data.get('message')}")
    
    return data

References