debugging
39
总安装量
40
周安装量
#5369
全站排名
安装命令
npx skills add https://github.com/supercent-io/skills-template --skill debugging
Agent 安装分布
opencode
32
claude-code
30
gemini-cli
29
codex
28
github-copilot
23
antigravity
19
Skill 文档
Debugging
When to use this skill
- Encountering runtime errors or exceptions
- Code produces unexpected output or behavior
- Performance degradation or memory issues
- Intermittent or hard-to-reproduce bugs
- Understanding unfamiliar error messages
- Post-incident analysis and prevention
Instructions
Step 1: Gather Information
Collect all relevant context about the issue:
Error details:
- Full error message and stack trace
- Error type (syntax, runtime, logic, etc.)
- When did it start occurring?
- Is it reproducible?
Environment:
- Language and version
- Framework and dependencies
- OS and runtime environment
- Recent changes to code or config
# Check recent changes
git log --oneline -10
git diff HEAD~5
# Check dependency versions
npm list --depth=0 # Node.js
pip freeze # Python
Step 2: Reproduce the Issue
Create a minimal, reproducible example:
# Bad: Vague description
"The function sometimes fails"
# Good: Specific reproduction steps
"""
1. Call process_data() with input: {"id": None}
2. Error occurs: TypeError at line 45
3. Expected: Return empty dict
4. Actual: Raises exception
"""
# Minimal reproduction
def test_reproduce_bug():
result = process_data({"id": None}) # Fails here
assert result == {}
Step 3: Isolate the Problem
Use binary search debugging to narrow down the issue:
Print/Log debugging:
def problematic_function(data):
print(f"[DEBUG] Input: {data}") # Entry point
result = step_one(data)
print(f"[DEBUG] After step_one: {result}")
result = step_two(result)
print(f"[DEBUG] After step_two: {result}") # Issue here?
return step_three(result)
Divide and conquer:
# Comment out half the code
# If error persists: bug is in remaining half
# If error gone: bug is in commented half
# Repeat until isolated
Step 4: Analyze Root Cause
Common bug patterns and solutions:
| Pattern | Symptom | Solution |
|---|---|---|
| Off-by-one | Index out of bounds | Check loop bounds |
| Null reference | NullPointerException | Add null checks |
| Race condition | Intermittent failures | Add synchronization |
| Memory leak | Gradual slowdown | Check resource cleanup |
| Type mismatch | Unexpected behavior | Validate types |
Questions to ask:
- What changed recently?
- Does it fail with specific inputs?
- Is it environment-specific?
- Are there any patterns in failures?
Step 5: Implement Fix
Apply the fix with proper verification:
# Before: Bug
def get_user(user_id):
return users[user_id] # KeyError if not found
# After: Fix with proper handling
def get_user(user_id):
if user_id not in users:
return None # Or raise custom exception
return users[user_id]
Fix checklist:
- Addresses root cause, not just symptom
- Doesn’t break existing functionality
- Handles edge cases
- Includes appropriate error handling
- Has test coverage
Step 6: Verify and Prevent
Ensure the fix works and prevent regression:
# Add test for the specific bug
def test_bug_fix_issue_123():
"""Regression test for issue #123: KeyError on missing user"""
result = get_user("nonexistent_id")
assert result is None # Should not raise
# Add edge case tests
@pytest.mark.parametrize("input,expected", [
(None, None),
("", None),
("valid_id", {"name": "User"}),
])
def test_get_user_edge_cases(input, expected):
assert get_user(input) == expected
Examples
Example 1: TypeError debugging
Error:
TypeError: cannot unpack non-iterable NoneType object
File "app.py", line 25, in process
name, email = get_user_info(user_id)
Analysis:
# Problem: get_user_info returns None when user not found
def get_user_info(user_id):
user = db.find_user(user_id)
if user:
return user.name, user.email
# Missing: return None case!
# Fix: Handle None case
def get_user_info(user_id):
user = db.find_user(user_id)
if user:
return user.name, user.email
return None, None # Or raise UserNotFoundError
Example 2: Race condition debugging
Symptom: Test passes locally, fails in CI intermittently
Analysis:
# Problem: Shared state without synchronization
class Counter:
def __init__(self):
self.value = 0
def increment(self):
self.value += 1 # Not atomic!
# Fix: Add thread safety
import threading
class Counter:
def __init__(self):
self.value = 0
self._lock = threading.Lock()
def increment(self):
with self._lock:
self.value += 1
Example 3: Memory leak debugging
Tool: Use memory profiler
from memory_profiler import profile
@profile
def process_large_data():
results = []
for item in large_dataset:
results.append(transform(item)) # Memory grows
return results
# Fix: Use generator for large datasets
def process_large_data():
for item in large_dataset:
yield transform(item) # Memory efficient
Best practices
- Reproduce first: Never fix what you can’t reproduce
- One change at a time: Isolate variables when debugging
- Read the error: Error messages usually point to the issue
- Check assumptions: Verify what you think is true
- Use version control: Easy to revert and compare changes
- Document findings: Help future debugging efforts
- Write tests: Prevent regression of fixed bugs
Debugging Tools
| Language | Debugger | Profiler |
|---|---|---|
| Python | pdb, ipdb | cProfile, memory_profiler |
| JavaScript | Chrome DevTools | Performance tab |
| Java | IntelliJ Debugger | JProfiler, VisualVM |
| Go | Delve | pprof |
| Rust | rust-gdb | cargo-flamegraph |