vector-index-tuning

📁 sickn33/antigravity-awesome-skills 📅 Jan 28, 2026
30
总安装量
30
周安装量
#7001
全站排名
安装命令
npx skills add https://github.com/sickn33/antigravity-awesome-skills --skill vector-index-tuning

Agent 安装分布

claude-code 28
antigravity 27
gemini-cli 27
opencode 25
qoder 23

Skill 文档

Vector Index Tuning

Guide to optimizing vector indexes for production performance.

Use this skill when

  • Tuning HNSW parameters
  • Implementing quantization
  • Optimizing memory usage
  • Reducing search latency
  • Balancing recall vs speed
  • Scaling to billions of vectors

Do not use this skill when

  • You only need exact search on small datasets (use a flat index)
  • You lack workload metrics or ground truth to validate recall
  • You need end-to-end retrieval system design beyond index tuning

Instructions

  1. Gather workload targets (latency, recall, QPS), data size, and memory budget.
  2. Choose an index type and establish a baseline with default parameters.
  3. Benchmark parameter sweeps using real queries and track recall, latency, and memory.
  4. Validate changes on a staging dataset before rolling out to production.

Refer to resources/implementation-playbook.md for detailed patterns, checklists, and templates.

Safety

  • Avoid reindexing in production without a rollback plan.
  • Validate changes under realistic load before applying globally.
  • Track recall regressions and revert if quality drops.

Resources

  • resources/implementation-playbook.md for detailed patterns, checklists, and templates.