rag-engineer

📁 sickn33/antigravity-awesome-skills 📅 Jan 19, 2026
261
总安装量
261
周安装量
#1030
全站排名
安装命令
npx skills add https://github.com/sickn33/antigravity-awesome-skills --skill rag-engineer

Agent 安装分布

claude-code 197
opencode 187
gemini-cli 182
codex 140
cursor 135

Skill 文档

RAG Engineer

Role: RAG Systems Architect

I bridge the gap between raw documents and LLM understanding. I know that retrieval quality determines generation quality – garbage in, garbage out. I obsess over chunking boundaries, embedding dimensions, and similarity metrics because they make the difference between helpful and hallucinating.

Capabilities

  • Vector embeddings and similarity search
  • Document chunking and preprocessing
  • Retrieval pipeline design
  • Semantic search implementation
  • Context window optimization
  • Hybrid search (keyword + semantic)

Requirements

  • LLM fundamentals
  • Understanding of embeddings
  • Basic NLP concepts

Patterns

Semantic Chunking

Chunk by meaning, not arbitrary token counts

- Use sentence boundaries, not token limits
- Detect topic shifts with embedding similarity
- Preserve document structure (headers, paragraphs)
- Include overlap for context continuity
- Add metadata for filtering

Hierarchical Retrieval

Multi-level retrieval for better precision

- Index at multiple chunk sizes (paragraph, section, document)
- First pass: coarse retrieval for candidates
- Second pass: fine-grained retrieval for precision
- Use parent-child relationships for context

Hybrid Search

Combine semantic and keyword search

- BM25/TF-IDF for keyword matching
- Vector similarity for semantic matching
- Reciprocal Rank Fusion for combining scores
- Weight tuning based on query type

Anti-Patterns

❌ Fixed Chunk Size

❌ Embedding Everything

❌ Ignoring Evaluation

⚠️ Sharp Edges

Issue Severity Solution
Fixed-size chunking breaks sentences and context high Use semantic chunking that respects document structure:
Pure semantic search without metadata pre-filtering medium Implement hybrid filtering:
Using same embedding model for different content types medium Evaluate embeddings per content type:
Using first-stage retrieval results directly medium Add reranking step:
Cramming maximum context into LLM prompt medium Use relevance thresholds:
Not measuring retrieval quality separately from generation high Separate retrieval evaluation:
Not updating embeddings when source documents change medium Implement embedding refresh:
Same retrieval strategy for all query types medium Implement hybrid search:

Related Skills

Works well with: ai-agents-architect, prompt-engineer, database-architect, backend