reasoningbank-intelligence
0
总安装量
0
周安装量
安装命令
npx skills add https://github.com/ruvnet/claude-flow --skill ReasoningBank Intelligence
Skill 文档
ReasoningBank Intelligence
What This Skill Does
Implements ReasoningBank’s adaptive learning system for AI agents to learn from experience, recognize patterns, and optimize strategies over time. Enables meta-cognitive capabilities and continuous improvement.
Prerequisites
- agentic-flow v1.5.11+
- AgentDB v1.0.4+ (for persistence)
- Node.js 18+
Quick Start
import { ReasoningBank } from 'agentic-flow$reasoningbank';
// Initialize ReasoningBank
const rb = new ReasoningBank({
persist: true,
learningRate: 0.1,
adapter: 'agentdb' // Use AgentDB for storage
});
// Record task outcome
await rb.recordExperience({
task: 'code_review',
approach: 'static_analysis_first',
outcome: {
success: true,
metrics: {
bugs_found: 5,
time_taken: 120,
false_positives: 1
}
},
context: {
language: 'typescript',
complexity: 'medium'
}
});
// Get optimal strategy
const strategy = await rb.recommendStrategy('code_review', {
language: 'typescript',
complexity: 'high'
});
Core Features
1. Pattern Recognition
// Learn patterns from data
await rb.learnPattern({
pattern: 'api_errors_increase_after_deploy',
triggers: ['deployment', 'traffic_spike'],
actions: ['rollback', 'scale_up'],
confidence: 0.85
});
// Match patterns
const matches = await rb.matchPatterns(currentSituation);
2. Strategy Optimization
// Compare strategies
const comparison = await rb.compareStrategies('bug_fixing', [
'tdd_approach',
'debug_first',
'reproduce_then_fix'
]);
// Get best strategy
const best = comparison.strategies[0];
console.log(`Best: ${best.name} (score: ${best.score})`);
3. Continuous Learning
// Enable auto-learning from all tasks
await rb.enableAutoLearning({
threshold: 0.7, // Only learn from high-confidence outcomes
updateFrequency: 100 // Update models every 100 experiences
});
Advanced Usage
Meta-Learning
// Learn about learning
await rb.metaLearn({
observation: 'parallel_execution_faster_for_independent_tasks',
confidence: 0.95,
applicability: {
task_types: ['batch_processing', 'data_transformation'],
conditions: ['tasks_independent', 'io_bound']
}
});
Transfer Learning
// Apply knowledge from one domain to another
await rb.transferKnowledge({
from: 'code_review_javascript',
to: 'code_review_typescript',
similarity: 0.8
});
Adaptive Agents
// Create self-improving agent
class AdaptiveAgent {
async execute(task: Task) {
// Get optimal strategy
const strategy = await rb.recommendStrategy(task.type, task.context);
// Execute with strategy
const result = await this.executeWithStrategy(task, strategy);
// Learn from outcome
await rb.recordExperience({
task: task.type,
approach: strategy.name,
outcome: result,
context: task.context
});
return result;
}
}
Integration with AgentDB
// Persist ReasoningBank data
await rb.configure({
storage: {
type: 'agentdb',
options: {
database: '.$reasoning-bank.db',
enableVectorSearch: true
}
}
});
// Query learned patterns
const patterns = await rb.query({
category: 'optimization',
minConfidence: 0.8,
timeRange: { last: '30d' }
});
Performance Metrics
// Track learning effectiveness
const metrics = await rb.getMetrics();
console.log(`
Total Experiences: ${metrics.totalExperiences}
Patterns Learned: ${metrics.patternsLearned}
Strategy Success Rate: ${metrics.strategySuccessRate}
Improvement Over Time: ${metrics.improvement}
`);
Best Practices
- Record consistently: Log all task outcomes, not just successes
- Provide context: Rich context improves pattern matching
- Set thresholds: Filter low-confidence learnings
- Review periodically: Audit learned patterns for quality
- Use vector search: Enable semantic pattern matching
Troubleshooting
Issue: Poor recommendations
Solution: Ensure sufficient training data (100+ experiences per task type)
Issue: Slow pattern matching
Solution: Enable vector indexing in AgentDB
Issue: Memory growing large
Solution: Set TTL for old experiences or enable pruning
Learn More
- ReasoningBank Guide: agentic-flow$src$reasoningbank/README.md
- AgentDB Integration: packages$agentdb$docs$reasoningbank.md
- Pattern Learning: docs$reasoning$patterns.md