numpy-best-practices
29
总安装量
29
周安装量
#7181
全站排名
安装命令
npx skills add https://github.com/mindrally/skills --skill numpy-best-practices
Agent 安装分布
claude-code
22
gemini-cli
21
opencode
21
antigravity
19
codex
19
cursor
18
Skill 文档
NumPy Best Practices
Expert guidelines for NumPy development, focusing on array programming, numerical computing, and performance optimization.
Code Style and Structure
- Write concise, technical Python code with accurate NumPy examples
- Prefer vectorized operations over explicit loops for performance
- Use descriptive variable names reflecting data content (e.g.,
weights,gradients,input_array) - Follow PEP 8 style guidelines for Python code
- Use functional programming patterns when appropriate
Array Creation and Manipulation
- Use appropriate array creation functions:
np.array(),np.zeros(),np.ones(),np.empty(),np.arange(),np.linspace() - Prefer
np.zeros()ornp.empty()for pre-allocation when array size is known - Use
np.concatenate(),np.vstack(),np.hstack()for combining arrays - Leverage broadcasting for operations on arrays with different shapes
Indexing and Slicing
- Use advanced indexing with boolean arrays for conditional selection
- Prefer views over copies when possible to save memory
- Use
np.where()for conditional element selection - Understand the difference between fancy indexing (creates copy) and basic slicing (creates view)
Data Types
- Specify appropriate data types explicitly using
dtypeparameter - Use
np.float32for memory-efficient computations when full precision is not needed - Be aware of integer overflow with fixed-size integer types
- Use
np.asarray()for type conversion without unnecessary copies
Performance Optimization
Vectorization
- Always prefer vectorized operations over Python loops
- Use NumPy universal functions (ufuncs) for element-wise operations
- Leverage
np.einsum()for complex tensor operations - Use
np.dot()or@operator for matrix multiplication
Memory Management
- Use
np.ndarray.flagsto check memory layout (C-contiguous vs Fortran-contiguous) - Prefer in-place operations with
outparameter when possible - Use memory-mapped arrays (
np.memmap) for large datasets - Be mindful of array copies vs views
Computation Efficiency
- Use
np.sum(),np.mean(),np.std()withaxisparameter for aggregations - Leverage
np.cumsum(),np.cumprod()for cumulative operations - Use
np.searchsorted()for efficient sorted array operations
Error Handling and Validation
- Validate input shapes and data types before computations
- Use assertions for dimension checking with informative messages
- Handle NaN and Inf values appropriately with
np.isnan(),np.isinf() - Use
np.errstate()context manager for controlling floating-point error handling
Random Number Generation
- Use
np.random.default_rng()for modern random number generation - Set seeds for reproducibility:
rng = np.random.default_rng(seed=42) - Prefer the new Generator API over legacy
np.randomfunctions - Use appropriate distributions:
rng.normal(),rng.uniform(),rng.choice()
Linear Algebra
- Use
np.linalgfor linear algebra operations - Leverage
np.linalg.solve()instead of computing inverse for linear systems - Use
np.linalg.eig(),np.linalg.svd()for decompositions - Check matrix condition with
np.linalg.cond()before inversion
Testing and Documentation
- Write unit tests using
pytestwithnp.testingassertions - Use
np.testing.assert_array_equal()for exact comparisons - Use
np.testing.assert_array_almost_equal()for floating-point comparisons - Include comprehensive docstrings following NumPy docstring format
Key Conventions
- Import as
import numpy as np - Use
snake_casefor variables and functions - Document array shapes in docstrings
- Profile code with
%timeitto identify bottlenecks