tooluniverse-antibody-engineering
npx skills add https://github.com/mims-harvard/tooluniverse --skill tooluniverse-antibody-engineering
Agent 安装分布
Skill 文档
Antibody Engineering & Optimization
AI-guided antibody optimization pipeline from preclinical lead to clinical candidate. Covers sequence humanization, structure modeling, affinity optimization, developability assessment, immunogenicity prediction, and manufacturing feasibility.
KEY PRINCIPLES:
- Report-first approach – Create optimization report before analysis
- Evidence-graded humanization – Score based on germline alignment and framework retention
- Developability-focused – Assess aggregation, stability, PTMs, immunogenicity
- Structure-guided – Use AlphaFold/PDB structures for CDR analysis
- Clinical precedent – Reference approved antibodies for validation
- Quantitative scoring – Developability score (0-100) combining multiple factors
- English-first queries – Always use English terms in tool calls, even if user writes in another language. Respond in user’s language
When to Use
Apply when user asks:
- “Humanize this mouse antibody sequence”
- “Optimize antibody affinity for [target]”
- “Assess developability of this antibody”
- “Predict immunogenicity risk for [sequence]”
- “Engineer bispecific antibody against [targets]”
- “Reduce aggregation in antibody formulation”
- “Design pH-dependent binding antibody”
- “Analyze CDR sequences and suggest mutations”
Critical Workflow Requirements
1. Report-First Approach (MANDATORY)
-
Create the report file FIRST:
- File name:
antibody_optimization_report.md - Initialize with section headers
- Add placeholder:
[Analyzing...]
- File name:
-
Progressively update as analysis completes
-
Output separate files:
optimized_sequences.fasta– All optimized variantshumanization_comparison.csv– Before/after comparisondevelopability_assessment.csv– Detailed scores
2. Documentation Standards (MANDATORY)
Every optimization MUST include:
### Optimized Variant: VH_Humanized_v1
**Original Sequence**: EVQLVESGGGLVQPGG... (mouse)
**Humanized Sequence**: EVQLVQSGAEVKKPGA... (human framework)
**Humanization Score**: 87% human framework
**CDR Preservation**: 100% (all CDR residues retained)
**Metrics**:
| Metric | Original | Optimized | Change |
|--------|----------|-----------|--------|
| Humanness | 62% | 87% | +25% |
| Aggregation risk | 0.58 | 0.32 | -45% |
| Predicted KD | 5.2 nM | 3.8 nM | +27% affinity |
| Immunogenicity | High | Low | -65% |
*Source: IMGT germline analysis, IEDB predictions*
Phase 0: Tool Verification
Required Tools
| Tool | Purpose | Category |
|---|---|---|
IMGT_search_genes |
Germline gene identification | Humanization |
IMGT_get_sequence |
Human framework sequences | Humanization |
SAbDab_search_structures |
Antibody structure precedents | Structure |
TheraSAbDab_search_by_target |
Clinical antibody benchmarks | Validation |
AlphaFold_get_prediction |
Structure modeling | Structure |
iedb_search_epitopes |
Epitope identification | Immunogenicity |
iedb_search_bcell |
B-cell epitope prediction | Immunogenicity |
UniProt_get_protein_by_accession |
Target antigen information | Target |
STRING_get_interactions |
Protein interaction network | Bispecifics |
PubMed_search |
Literature precedents | Validation |
Workflow Overview
Phase 1: Input Analysis & Characterization
âââ Sequence annotation (CDRs, framework)
âââ Species identification
âââ Target antigen identification
âââ Clinical precedent search
âââ OUTPUT: Input characterization
â
Phase 2: Humanization Strategy
âââ Germline gene alignment (IMGT)
âââ Framework selection
âââ CDR grafting design
âââ Backmutation identification
âââ OUTPUT: Humanization plan
â
Phase 3: Structure Modeling & Analysis
âââ AlphaFold prediction
âââ CDR conformation analysis
âââ Epitope mapping
âââ Interface analysis
âââ OUTPUT: Structural assessment
â
Phase 4: Affinity Optimization
âââ In silico mutation screening
âââ CDR optimization strategies
âââ Interface improvement
âââ OUTPUT: Affinity variants
â
Phase 5: Developability Assessment
âââ Aggregation propensity
âââ PTM site identification
âââ Stability prediction
âââ Expression prediction
âââ OUTPUT: Developability score
â
Phase 6: Immunogenicity Prediction
âââ MHC-II epitope prediction (IEDB)
âââ T-cell epitope risk
âââ Aggregation-related immunogenicity
âââ OUTPUT: Immunogenicity risk score
â
Phase 7: Manufacturing Feasibility
âââ Expression level prediction
âââ Purification considerations
âââ Formulation stability
âââ OUTPUT: Manufacturing assessment
â
Phase 8: Final Report & Recommendations
âââ Ranked variant list
âââ Experimental validation plan
âââ Next steps
âââ OUTPUT: Comprehensive report
Phase 1: Input Analysis & Characterization
1.1 Sequence Annotation
def annotate_antibody_sequence(sequence):
"""Annotate antibody sequence with CDRs and framework regions."""
# Use IMGT numbering scheme (standard for antibodies)
# CDR definitions (IMGT):
# CDR-H1: 27-38, CDR-H2: 56-65, CDR-H3: 105-117
# CDR-L1: 27-38, CDR-L2: 56-65, CDR-L3: 105-117
annotation = {
'sequence': sequence,
'length': len(sequence),
'regions': {
'FR1': sequence[0:26],
'CDR1': sequence[26:38],
'FR2': sequence[38:55],
'CDR2': sequence[55:65],
'FR3': sequence[65:104],
'CDR3': sequence[104:117],
'FR4': sequence[117:]
}
}
return annotation
1.2 Species & Germline Identification
def identify_germline(tu, vh_sequence, vl_sequence):
"""Identify germline genes for VH and VL chains using IMGT."""
# Search for human germline genes
vh_germlines = tu.tools.IMGT_search_genes(
gene_type="IGHV",
species="Homo sapiens"
)
vl_germlines = tu.tools.IMGT_search_genes(
gene_type="IGKV", # or IGLV for lambda
species="Homo sapiens"
)
# Get sequences for top matches
# Calculate identity % for each germline
# Return closest matches
return {
'vh_germline': 'IGHV1-69*01',
'vh_identity': 87.2,
'vl_germline': 'IGKV1-39*01',
'vl_identity': 89.5
}
1.3 Clinical Precedent Search
def search_clinical_precedents(tu, target_antigen):
"""Find approved/clinical antibodies against same target."""
# Search Thera-SAbDab for clinical antibodies
therapeutics = tu.tools.TheraSAbDab_search_by_target(
target=target_antigen
)
approved = [ab for ab in therapeutics if ab['phase'] == 'Approved']
clinical = [ab for ab in therapeutics if 'Phase' in ab['phase']]
return {
'approved_count': len(approved),
'clinical_count': len(clinical),
'examples': approved[:3],
'insights': extract_design_patterns(approved)
}
1.4 Output for Report
## 1. Input Characterization
### 1.1 Sequence Information
| Property | Heavy Chain (VH) | Light Chain (VL) |
|----------|------------------|------------------|
| **Length** | 118 aa | 107 aa |
| **Species** | Mouse (Mus musculus) | Mouse (Mus musculus) |
| **Humanness** | 62% | 68% |
| **Closest human germline** | IGHV1-69*01 (87% identity) | IGKV1-39*01 (90% identity) |
### 1.2 CDR Annotation (IMGT Numbering)
**Heavy Chain**:
- FR1: 1-26, CDR-H1: 27-38, FR2: 39-55, CDR-H2: 56-65, FR3: 66-104, CDR-H3: 105-117, FR4: 118-128
**CDR Sequences**:
| CDR | Sequence | Length | Canonical Class |
|-----|----------|--------|-----------------|
| CDR-H1 | GYTFTSYYMH | 10 | H1-13-1 |
| CDR-H2 | GIIPIFGTANY | 11 | H2-10-1 |
| CDR-H3 | ARDDGSYSPFDYWG | 14 | - (unique) |
| CDR-L1 | RASQSISSYLN | 11 | L1-11-1 |
| CDR-L2 | AASSLQS | 7 | L2-8-1 |
| CDR-L3 | QQSYSTPLT | 9 | L3-9-cis7-1 |
### 1.3 Target Information
| Property | Value |
|----------|-------|
| **Target** | PD-L1 (Programmed death-ligand 1) |
| **UniProt** | Q9NZQ7 |
| **Function** | Immune checkpoint, inhibits T-cell activation |
| **Disease relevance** | Cancer immunotherapy target |
### 1.4 Clinical Precedents
**Approved antibodies targeting PD-L1**:
1. **Atezolizumab** (Tecentriq) - IgG1, approved 2016
2. **Durvalumab** (Imfinzi) - IgG1, approved 2017
3. **Avelumab** (Bavencio) - IgG1, approved 2017
**Key insights**: All approved anti-PD-L1 antibodies use human IgG1 scaffolds with effector function modifications.
*Source: TheraSAbDab, UniProt*
Phase 2: Humanization Strategy
2.1 Framework Selection
def select_human_framework(tu, mouse_sequence, cdr_sequences):
"""Select optimal human framework for CDR grafting."""
# Search IMGT for human germline genes
vh_genes = tu.tools.IMGT_search_genes(
gene_type="IGHV",
species="Homo sapiens"
)
# For each candidate framework:
# 1. Calculate sequence identity to mouse FR
# 2. Check CDR canonical class compatibility
# 3. Assess structural compatibility
# 4. Consider clinical precedents
candidates = []
for gene in vh_genes[:20]: # Top 20 human germlines
gene_seq = tu.tools.IMGT_get_sequence(
accession=gene['accession'],
format='fasta'
)
score = calculate_framework_score(
mouse_fr=extract_framework(mouse_sequence),
human_fr=extract_framework(gene_seq),
cdr_compatibility=check_cdr_compatibility(cdr_sequences, gene_seq)
)
candidates.append({
'germline': gene['name'],
'identity': score['identity'],
'cdr_compatibility': score['cdr_compatibility'],
'clinical_use': count_clinical_uses(gene['name']),
'overall_score': score['total']
})
# Sort by overall score
return sorted(candidates, key=lambda x: x['overall_score'], reverse=True)
2.2 CDR Grafting Design
def design_cdr_grafting(mouse_sequence, human_framework, cdr_sequences):
"""Design CDR grafting with backmutation identification."""
# Graft mouse CDRs onto human framework
grafted_sequence = graft_cdrs(
human_framework=human_framework,
mouse_cdrs=cdr_sequences
)
# Identify Vernier zone residues (affect CDR conformation)
vernier_residues = [2, 27, 28, 29, 30, 47, 48, 67, 69, 71, 78, 93, 94]
# Identify potential backmutations
backmutations = []
for pos in vernier_residues:
if mouse_sequence[pos] != human_framework[pos]:
backmutations.append({
'position': pos,
'human_aa': human_framework[pos],
'mouse_aa': mouse_sequence[pos],
'reason': 'Vernier zone - may affect CDR conformation',
'priority': 'High' if pos in [27, 29, 30, 48] else 'Medium'
})
return {
'grafted_sequence': grafted_sequence,
'backmutations': backmutations,
'humanness_score': calculate_humanness(grafted_sequence)
}
2.3 Humanization Scoring
def calculate_humanization_score(sequence, human_germline):
"""Calculate comprehensive humanization score."""
# Framework humanness (% identity to human germline)
fr_identity = calculate_framework_identity(sequence, human_germline)
# T-cell epitope content (lower is better)
tcell_epitope_count = predict_tcell_epitopes(sequence)
# Unusual residues in human context
unusual_residues = count_unusual_residues(sequence)
# Aggregation hotspots
aggregation_motifs = find_aggregation_motifs(sequence)
score = {
'framework_humanness': fr_identity, # 0-100%
'cdr_preservation': 100, # Always 100% initially
'tcell_epitopes': tcell_epitope_count,
'unusual_residues': unusual_residues,
'aggregation_risk': len(aggregation_motifs),
'overall_score': calculate_weighted_score(
fr_identity, tcell_epitope_count, unusual_residues, aggregation_motifs
)
}
return score
2.4 Output for Report
## 2. Humanization Strategy
### 2.1 Framework Selection
**Selected Human Frameworks**:
| Chain | Germline | Identity | CDR Compatibility | Clinical Use | Score |
|-------|----------|----------|-------------------|--------------|-------|
| **VH** | IGHV1-69*01 | 87.2% | Excellent | 127 antibodies | 94/100 |
| **VL** | IGKV1-39*01 | 89.5% | Excellent | 89 antibodies | 92/100 |
**Rationale**:
- IGHV1-69*01: Most frequently used human germline in therapeutic antibodies
- High sequence identity minimizes risk of affinity loss
- Excellent CDR canonical class compatibility
- Proven clinical track record
### 2.2 CDR Grafting Design
**Grafting Strategy**: Direct CDR transfer with Vernier zone optimization
| Region | Source | Sequence | Rationale |
|--------|--------|----------|-----------|
| FR1 | IGHV1-69*01 | EVQLVQSGAEVKKPGA... | Human framework |
| CDR-H1 | Mouse | GYTFTSYYMH | Retain binding |
| FR2 | IGHV1-69*01 | VKWVRQAPGQGLE... | Human framework |
| CDR-H2 | Mouse | GIIPIFGTANY | Retain binding |
| FR3 | IGHV1-69*01 | RVTMTTDTSTSTYME... | Human framework |
| CDR-H3 | Mouse | ARDDGSYSPFDYWG | Retain binding |
| FR4 | IGHJ4*01 | WGQGTLVTVSS | Human framework |
### 2.3 Backmutation Analysis
**Identified Vernier Zone Residues** (may require backmutation):
| Position | Human | Mouse | Region | Impact | Priority |
|----------|-------|-------|--------|--------|----------|
| 27 | T | A | CDR-H1 boundary | CDR conformation | High |
| 48 | I | V | FR2 | VH-VL interface | High |
| 67 | A | S | FR3 | CDR-H2 support | Medium |
| 71 | R | K | FR3 | CDR-H2 support | Medium |
| 93 | A | T | FR3 | CDR-H3 base | Medium |
**Recommendation**: Test versions with/without backmutations at positions 27 and 48
### 2.4 Humanized Sequences
**Version 1: Full humanization** (no backmutations)
VH_Humanized_v1 | 87% human framework EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGGIIPIFGTANY AQKFQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARARDDGSYSPFDYWGQGTLVTVSS
**Version 2: With key backmutations** (positions 27, 48)
VH_Humanized_v2 | 85% human framework + backmutations EVQLVQSGAEVKKPGASVKVSCKASGYAFTSYYMHWVRQAPGQGLEWMVGIIPIFGTANY AQKFQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARARDDGSYSPFDYWGQGTLVTVSS
**Humanization Metrics**:
| Metric | Original (Mouse) | v1 (Full) | v2 (Backmut) |
|--------|------------------|-----------|--------------|
| Framework humanness | 62% | 87% | 85% |
| CDR preservation | 100% | 100% | 100% |
| Vernier zone match | Mouse | Human | Mixed |
| Predicted affinity | Baseline | 60-80% | 80-100% |
*Source: IMGT germline database, CDR analysis*
Phase 3: Structure Modeling & Analysis
3.1 AlphaFold Structure Prediction
def predict_antibody_structure(tu, vh_sequence, vl_sequence):
"""Predict antibody Fv structure using AlphaFold."""
# Combine VH and VL with linker
fv_sequence = vh_sequence + ":" + vl_sequence # AlphaFold uses : for chain separator
# Predict structure
prediction = tu.tools.AlphaFold_get_prediction(
sequence=fv_sequence,
return_format='pdb'
)
# Extract pLDDT scores
plddt_scores = extract_plddt(prediction)
# Analyze by region
regions = {
'VH_FR': np.mean([plddt_scores[i] for i in range(0, 26)]),
'CDR_H1': np.mean([plddt_scores[i] for i in range(26, 38)]),
'CDR_H2': np.mean([plddt_scores[i] for i in range(55, 65)]),
'CDR_H3': np.mean([plddt_scores[i] for i in range(104, 117)]),
'VL_FR': np.mean([plddt_scores[i] for i in range(len(vh_sequence), len(vh_sequence)+26)]),
'CDR_L1': np.mean([plddt_scores[i] for i in range(len(vh_sequence)+26, len(vh_sequence)+38)]),
}
return {
'structure': prediction,
'mean_plddt': np.mean(plddt_scores),
'regional_plddt': regions,
'cdr_confidence': np.mean([regions['CDR_H1'], regions['CDR_H2'], regions['CDR_H3']])
}
3.2 CDR Conformation Analysis
def analyze_cdr_conformation(structure):
"""Analyze CDR loop conformations and canonical classes."""
# Extract CDR coordinates
cdr_coords = extract_cdr_regions(structure)
# Classify canonical structures
cdr_classes = {
'CDR-H1': classify_canonical_structure(cdr_coords['H1']),
'CDR-H2': classify_canonical_structure(cdr_coords['H2']),
'CDR-H3': 'Non-canonical (14 aa)', # Usually unique
'CDR-L1': classify_canonical_structure(cdr_coords['L1']),
'CDR-L2': classify_canonical_structure(cdr_coords['L2']),
'CDR-L3': classify_canonical_structure(cdr_coords['L3'])
}
# Calculate RMSD to known canonical structures
rmsd_values = calculate_canonical_rmsd(cdr_coords, cdr_classes)
return {
'classes': cdr_classes,
'rmsd': rmsd_values,
'confidence': assess_conformation_confidence(rmsd_values)
}
3.3 Epitope Mapping
def map_epitope(tu, target_protein, antibody_structure):
"""Identify epitope on target protein."""
# Get target structure or predict
target_info = tu.tools.UniProt_get_protein_by_accession(
accession=target_protein
)
# Search for known epitopes
epitopes = tu.tools.iedb_search_epitopes(
sequence_contains=target_protein,
structure_type="Linear peptide",
limit=20
)
# Search for structural antibody complexes
sabdab_results = tu.tools.SAbDab_search_structures(
query=target_info['protein_name']
)
# Analyze binding interface
interface = {
'epitope_candidates': epitopes,
'structural_precedents': sabdab_results,
'predicted_interface': predict_binding_interface(antibody_structure)
}
return interface
3.4 Output for Report
## 3. Structure Modeling & Analysis
### 3.1 AlphaFold Predictions
**Structure Quality**:
| Variant | Mean pLDDT | VH pLDDT | VL pLDDT | CDR pLDDT | Confidence |
|---------|------------|----------|----------|-----------|------------|
| Original (Mouse) | 89.2 | 91.4 | 88.7 | 85.3 | High |
| VH_Humanized_v1 | 87.8 | 89.6 | 88.2 | 83.1 | High |
| VH_Humanized_v2 | 88.9 | 90.8 | 88.5 | 84.8 | High |
**Regional Confidence (v2)**:
- Framework regions: 92.3 (very high)
- CDR-H1, H2, L1, L2: 87-91 (high)
- CDR-H3: 78.4 (moderate - expected for unique CDR-H3)
- VH-VL interface: 90.1 (high)
### 3.2 CDR Conformation Analysis
**Canonical Classes** (Humanized v2):
| CDR | Length | Canonical Class | RMSD to Class | Status |
|-----|--------|-----------------|---------------|--------|
| CDR-H1 | 10 | H1-13-1 | 0.8 Ã
| â Maintained |
| CDR-H2 | 11 | H2-10-1 | 1.1 Ã
| â Maintained |
| CDR-H3 | 14 | Non-canonical | N/A | Unique structure |
| CDR-L1 | 11 | L1-11-1 | 0.9 Ã
| â Maintained |
| CDR-L2 | 7 | L2-8-1 | 0.7 Ã
| â Maintained |
| CDR-L3 | 9 | L3-9-cis7-1 | 1.0 Ã
| â Maintained |
**Assessment**: All CDR conformations well-preserved in humanized variants. Low RMSD values indicate minimal structural perturbation from humanization.
### 3.3 Epitope Analysis
**Known PD-L1 Epitopes** (IEDB):
| Epitope | Sequence | Position | Binding Antibodies | Conservation |
|---------|----------|----------|-------------------|--------------|
| Epitope 1 | LQDAG...VPEPP | 19-113 | Durvalumab, Avelumab | 98% |
| Epitope 2 | FTVT...PGPN | 54-68 | Atezolizumab | 100% |
| Epitope 3 | RLEDL...NVSI | 115-127 | Research Abs | 95% |
**Predicted Binding Interface**:
- Primary contact residues: CDR-H3 (70%), CDR-H1 (15%), CDR-H2 (10%)
- Secondary contacts: CDR-L3 (5%)
- Estimated buried surface area: 820 Ã
²
### 3.4 Structural Comparison
**Superposition with Clinical Antibodies** (SAbDab):
| Reference | PDB ID | VH RMSD | VL RMSD | CDR-H3 RMSD | Notes |
|-----------|--------|---------|---------|-------------|-------|
| Atezolizumab | 5X8L | 1.2 Ã
| 1.4 Ã
| 2.8 Ã
| Similar approach angle |
| Durvalumab | 5X8M | 1.8 Ã
| 1.5 Ã
| 3.4 Ã
| Different epitope |
| Research Ab | 5C3T | 0.9 Ã
| 1.1 Ã
| 1.5 Ã
| Very similar |
*Source: AlphaFold, IEDB, SAbDab*
Phase 4: Affinity Optimization
4.1 In Silico Mutation Screening
def design_affinity_variants(antibody_structure, target_structure):
"""Design affinity maturation variants using computational screening."""
# Identify interface residues
interface_residues = identify_interface_residues(
antibody_structure,
target_structure,
distance_cutoff=4.5 # Angstroms
)
# Focus on CDR residues
cdr_interface = [res for res in interface_residues if is_cdr_residue(res)]
# Design mutations for each position
variants = []
for position in cdr_interface:
# Try all amino acids except original
for aa in 'ACDEFGHIKLMNPQRSTVWY':
if aa != antibody_structure.sequence[position]:
predicted_ddg = predict_binding_energy_change(
structure=antibody_structure,
mutation=f"{antibody_structure.sequence[position]}{position}{aa}"
)
if predicted_ddg < -0.5: # Favorable change (more negative = better)
variants.append({
'position': position,
'original': antibody_structure.sequence[position],
'mutant': aa,
'predicted_ddg': predicted_ddg,
'predicted_kd_fold': calculate_kd_change(predicted_ddg)
})
# Rank by predicted improvement
return sorted(variants, key=lambda x: x['predicted_ddg'])
4.2 CDR Optimization Strategies
def cdr_optimization_strategies(cdr_sequence, cdr_name):
"""Identify CDR optimization strategies based on sequence and structure."""
strategies = []
# Strategy 1: Extend CDR for increased contact area
if len(cdr_sequence) < 12 and cdr_name == 'CDR-H3':
strategies.append({
'strategy': 'CDR-H3 extension',
'rationale': 'Add 1-2 residues to increase contact surface',
'expected_impact': '+2-5x affinity improvement',
'examples': ['Extension with Gly-Tyr', 'Extension with Ser-Asp']
})
# Strategy 2: Tyrosine enrichment
tyr_count = cdr_sequence.count('Y')
if tyr_count < 2:
strategies.append({
'strategy': 'Tyrosine enrichment',
'rationale': 'Tyr provides pi-stacking and H-bonds',
'expected_impact': '+2-3x affinity improvement',
'targets': suggest_tyr_positions(cdr_sequence)
})
# Strategy 3: Charged residue optimization
if 'PD' in cdr_sequence or 'EP' in cdr_sequence:
strategies.append({
'strategy': 'Salt bridge formation',
'rationale': 'Add charged residues for electrostatic interactions',
'expected_impact': '+1-2x affinity and pH sensitivity',
'targets': identify_salt_bridge_opportunities(cdr_sequence)
})
return strategies
4.3 Output for Report
## 4. Affinity Optimization
### 4.1 Current Affinity Assessment
| Property | Value | Method |
|----------|-------|--------|
| **Predicted KD** | 5.2 nM | Structure-based prediction |
| **Buried surface area** | 820 Ã
² | AlphaFold model |
| **Interface hotspots** | 6 residues | Energy decomposition |
**Target**: Single-digit nM affinity (KD < 5 nM)
### 4.2 Proposed Affinity Mutations
**High-Priority Mutations** (predicted >2x improvement):
| Position | Original | Mutant | Region | Predicted ÎÎG | KD Fold Improvement | Rationale |
|----------|----------|--------|--------|---------------|---------------------|-----------|
| H100a | S | Y | CDR-H3 | -1.2 kcal/mol | 7.4x | Pi-stacking with target Phe |
| H52 | I | W | CDR-H2 | -0.9 kcal/mol | 4.8x | Increased hydrophobic contact |
| L91 | Q | E | CDR-L3 | -0.7 kcal/mol | 3.3x | Salt bridge with target Arg |
| H58 | G | S | CDR-H2 | -0.6 kcal/mol | 2.7x | H-bond to target backbone |
**Medium-Priority Mutations** (predicted 1.5-2x improvement):
| Position | Original | Mutant | Region | Predicted ÎÎG | KD Fold Improvement | Rationale |
|----------|----------|--------|--------|---------------|---------------------|-----------|
| H33 | Y | F | CDR-H1 | -0.5 kcal/mol | 2.3x | Optimize stacking geometry |
| L50 | A | T | CDR-L2 | -0.4 kcal/mol | 2.0x | Additional H-bond |
### 4.3 Combination Strategy
**Recommended Testing Order**:
1. **Single mutants**: H100aY, H52W, L91E (test individually)
2. **Double mutants**: H100aY+H52W, H100aY+L91E (best combinations)
3. **Triple mutant**: H100aY+H52W+L91E (if additivity observed)
**Expected Outcome**:
- Single mutants: KD 1.5-2.5 nM (3-7x improvement)
- Best double mutant: KD 0.7-1.2 nM (7-15x improvement)
- Triple mutant: KD 0.3-0.6 nM (15-30x improvement) if additive
### 4.4 CDR Optimization Strategies
**Strategy 1: CDR-H3 Extension**
- Current length: 14 aa
- Proposed: Add Gly-Tyr at C-terminus (16 aa total)
- Rationale: Fill gap in binding interface, Tyr provides pi-stacking
- Expected impact: +2-3x affinity
**Strategy 2: Tyrosine Enrichment**
- Current Tyr count: 3 in CDRs
- Target positions: H33, H52a, L96
- Rationale: Tyr provides both hydrophobic and H-bond contacts
- Expected impact: +2-4x affinity
**Strategy 3: pH-Dependent Binding (Optional)**
- For tumor-selective uptake
- Add His residues at interface: H100a, L91
- pKa ~6.0: Bind at pH 7.4, release at pH 6.0
- Expected impact: Tumor selectivity, faster recycling
*Source: In silico modeling, structural analysis*
Phase 5: Developability Assessment
5.1 Aggregation Propensity
def assess_aggregation(sequence):
"""Comprehensive aggregation risk assessment."""
# Identify aggregation-prone regions (APR)
aprs = find_aggregation_motifs(sequence)
# Hydrophobic patches on surface
hydrophobic_patches = identify_surface_hydrophobic(sequence)
# Charge patches (extreme pI regions)
charge_patches = identify_charge_clusters(sequence)
# Sequence-based prediction scores
tango_score = predict_tango_score(sequence) # Beta-aggregation
aggrescan_score = predict_aggrescan(sequence) # General aggregation
# Isoelectric point
pi = calculate_isoelectric_point(sequence)
return {
'apr_count': len(aprs),
'apr_regions': aprs,
'hydrophobic_patches': hydrophobic_patches,
'charge_patches': charge_patches,
'tango_score': tango_score,
'aggrescan_score': aggrescan_score,
'pi': pi,
'overall_risk': categorize_risk(tango_score, aggrescan_score, len(aprs))
}
5.2 PTM Site Identification
def identify_ptm_sites(sequence):
"""Identify post-translational modification liability sites."""
ptm_sites = {
'deamidation': [],
'isomerization': [],
'oxidation': [],
'glycosylation': []
}
# Deamidation: Asn followed by Gly or Ser (NG, NS motifs)
for i, aa in enumerate(sequence[:-1]):
if aa == 'N' and sequence[i+1] in ['G', 'S']:
ptm_sites['deamidation'].append({
'position': i,
'motif': sequence[i:i+2],
'risk': 'High' if sequence[i+1] == 'G' else 'Medium',
'region': identify_region(i)
})
# Isomerization: Asp followed by Gly or Ser (DG, DS motifs)
for i, aa in enumerate(sequence[:-1]):
if aa == 'D' and sequence[i+1] in ['G', 'S']:
ptm_sites['isomerization'].append({
'position': i,
'motif': sequence[i:i+2],
'risk': 'High',
'region': identify_region(i)
})
# Oxidation: Met and Trp residues
for i, aa in enumerate(sequence):
if aa in ['M', 'W']:
ptm_sites['oxidation'].append({
'position': i,
'residue': aa,
'risk': 'Medium',
'region': identify_region(i)
})
# N-glycosylation: N-X-S/T motif (X != P)
for i in range(len(sequence)-2):
if sequence[i] == 'N' and sequence[i+1] != 'P' and sequence[i+2] in ['S', 'T']:
ptm_sites['glycosylation'].append({
'position': i,
'motif': sequence[i:i+3],
'region': identify_region(i)
})
return ptm_sites
5.3 Developability Scoring
def calculate_developability_score(sequence, structure):
"""Calculate comprehensive developability score (0-100)."""
# Component scores
aggregation = assess_aggregation(sequence)
ptm = identify_ptm_sites(sequence)
stability = predict_thermal_stability(structure)
expression = predict_expression_level(sequence)
solubility = predict_solubility(sequence)
# Scoring rubric (0-100 for each)
scores = {
'aggregation': score_aggregation(aggregation), # 100 = low risk
'ptm_liability': score_ptm_risk(ptm), # 100 = no PTM sites
'stability': score_stability(stability), # 100 = Tm > 70°C
'expression': score_expression(expression), # 100 = >1 g/L
'solubility': score_solubility(solubility) # 100 = >100 mg/mL
}
# Weighted average
weights = {
'aggregation': 0.30, # Most critical
'ptm_liability': 0.25,
'stability': 0.20,
'expression': 0.15,
'solubility': 0.10
}
overall = sum(scores[k] * weights[k] for k in scores.keys())
return {
'component_scores': scores,
'overall_score': overall,
'tier': categorize_developability(overall)
}
5.4 Output for Report
## 5. Developability Assessment
### 5.1 Overall Developability Score
| Variant | Aggregation | PTM Liability | Stability | Expression | Solubility | **Overall** | Tier |
|---------|-------------|---------------|-----------|------------|------------|-------------|------|
| Original (Mouse) | 58 | 45 | 72 | 65 | 70 | **62** | T3 |
| VH_Humanized_v1 | 72 | 55 | 75 | 78 | 75 | **71** | T2 |
| VH_Humanized_v2 | 68 | 58 | 74 | 75 | 73 | **69** | T2 |
| Affinity_opt | 85 | 72 | 78 | 80 | 82 | **79** | T1 |
**Scoring**: 0-100 scale (higher is better), Tiers: T1 (>75), T2 (60-75), T3 (<60)
### 5.2 Aggregation Analysis
**Aggregation-Prone Regions** (APR) in VH:
| Position | Sequence | Region | TANGO Score | Risk | Recommendation |
|----------|----------|--------|-------------|------|----------------|
| 85-92 | STSTAYMEL | FR3 | 42 | Medium | Consider T86S mutation |
| 108-112 | DDGSY | CDR-H3 | 28 | Low | Monitor in formulation |
**Overall Aggregation Risk**:
- VH: Low (TANGO: 15, AGGRESCAN: -12)
- VL: Very Low (TANGO: 8, AGGRESCAN: -18)
- pI: VH 7.2, VL 5.8 (favorable for purification)
**Recommendations**:
- Formulate at pH 6.0-6.5 (below pI of VH)
- Add arginine-glutamate (20-50 mM) to reduce aggregation
- Target concentration: >100 mg/mL achievable
### 5.3 PTM Liability Sites
**High-Risk PTM Sites** (require mitigation):
| Position | Motif | PTM Type | Risk | Region | Mitigation Strategy |
|----------|-------|----------|------|--------|---------------------|
| H54-55 | NG | Deamidation | High | CDR-H2 | Mutate to NQ or QG |
| H84-85 | DS | Isomerization | High | FR3 | Mutate to ES or DA |
| L28 | M | Oxidation | Medium | CDR-L1 | Mutate to Leu or Ile |
**Medium-Risk Sites**:
- H89: Trp (oxidation) - Monitor but likely stable in framework
- L97: Asn (deamidation, NS motif) - Low risk in CDR-L3
**Mitigation Priority**:
1. H54-55 (NG â NQ): Removes high-risk deamidation, retains H-bond capability
2. H84-85 (DS â ES): Removes isomerization, maintains charge
3. L28 (M â L): Reduces oxidation risk, maintains hydrophobicity
**Expected Impact**: Mitigation improves PTM score from 72 â 92
### 5.4 Stability Predictions
**Thermal Stability**:
| Variant | Predicted Tm (°C) | ÎTm vs Original | Aggregation Tonset | Stability Tier |
|---------|-------------------|-----------------|-------------------|----------------|
| Original | 68 | - | 62°C | T3 (Marginal) |
| Humanized_v2 | 71 | +3°C | 64°C | T2 (Good) |
| Affinity_opt | 73 | +5°C | 67°C | T2 (Good) |
| PTM_mitigated | 74 | +6°C | 69°C | T1 (Excellent) |
**Target**: Tm >70°C, Tonset >65°C for long-term stability
**Stability Optimization**:
- Framework humanization improved Tm by +3°C
- Removal of destabilizing motifs: +2°C
- Further optimization possible: Proline introduction in loops
### 5.5 Expression & Manufacturing
**Expression Prediction** (CHO cells):
| Variant | Predicted Titer (g/L) | Soluble Fraction | His-tag Purification | Overall |
|---------|----------------------|------------------|---------------------|---------|
| Original | 1.2 | 75% | Good | T2 |
| Humanized_v2 | 1.8 | 85% | Excellent | T1 |
| Affinity_opt | 2.1 | 88% | Excellent | T1 |
**Manufacturing Considerations**:
- No unusual codons â Good for CHO expression
- No free cysteines â No misfolding risk
- Neutral pI â Easy purification by ion exchange
- Low aggregation â High formulation concentration possible
**Predicted Manufacturing Profile**:
- Expression: 2.0 g/L (CHO fed-batch)
- Purification yield: 75-80%
- Final formulation: >150 mg/mL achievable
- Shelf life: >2 years at 4°C (estimated)
*Source: In silico predictions, sequence analysis*
Phase 6: Immunogenicity Prediction
6.1 T-Cell Epitope Prediction
def predict_tcell_epitopes(tu, sequence):
"""Predict T-cell epitopes using IEDB tools."""
# MHC-II binding prediction (immunogenicity risk)
# Query IEDB for predicted epitopes
predicted_epitopes = []
# Scan sequence with 9-mer sliding window
for i in range(len(sequence) - 8):
peptide = sequence[i:i+9]
# Search IEDB for similar epitopes
iedb_results = tu.tools.iedb_search_epitopes(
sequence_contains=peptide[:5], # Core sequence
limit=10
)
# If found in IEDB â higher risk
if len(iedb_results) > 0:
predicted_epitopes.append({
'position': i,
'peptide': peptide,
'risk': 'High',
'evidence': f"{len(iedb_results)} similar epitopes in IEDB"
})
# Score overall immunogenicity risk
risk_score = calculate_immunogenicity_risk(predicted_epitopes, sequence)
return {
'epitope_count': len(predicted_epitopes),
'high_risk_epitopes': [e for e in predicted_epitopes if e['risk'] == 'High'],
'risk_score': risk_score,
'recommendation': recommend_deimmunization(predicted_epitopes)
}
6.2 Immunogenicity Risk Scoring
def calculate_immunogenicity_risk(epitopes, sequence):
"""Calculate comprehensive immunogenicity risk score."""
# Component 1: T-cell epitope count (IEDB-based)
tcell_score = len(epitopes) * 10 # Each epitope adds 10 points
# Component 2: Non-human residues in framework
non_human_residues = count_non_human_residues(sequence)
non_human_score = non_human_residues * 5
# Component 3: Aggregation-related immunogenicity
aggregation_score = assess_aggregation(sequence)['overall_risk'] * 20
# Total risk (0-100, lower is better)
total_risk = min(100, tcell_score + non_human_score + aggregation_score)
return {
'tcell_risk': tcell_score,
'non_human_risk': non_human_score,
'aggregation_risk': aggregation_score,
'total_risk': total_risk,
'category': 'Low' if total_risk < 30 else 'Medium' if total_risk < 60 else 'High'
}
6.3 Output for Report
## 6. Immunogenicity Prediction
### 6.1 T-Cell Epitope Analysis
**Predicted MHC-II Binding Epitopes** (IEDB):
| Position | Peptide | MHC Alleles | IEDB Matches | Risk Level | Region |
|----------|---------|-------------|--------------|------------|--------|
| VH 48-56 | QGLEWMGGI | HLA-DR1, DR4 | 3 | Medium | FR2 |
| VH 78-86 | TDTSTSTA | HLA-DR1 | 5 | High | FR3 (mouse residues) |
| VL 52-60 | LLIYSASSL | HLA-DR1, DR15 | 2 | Medium | FR2 |
**High-Risk Epitope Details**:
- **VH 78-86 (TDTSTSTA)**: Contains mouse-derived residues T84, S85
- Found in 5 immunogenic peptides in IEDB
- Recommendation: Backmutate to human consensus (TSTSSAYL)
### 6.2 Immunogenicity Risk Score
| Variant | T-Cell Epitopes | Non-Human Residues | Aggregation Risk | **Total Risk** | Category |
|---------|-----------------|-------------------|------------------|----------------|----------|
| Original (Mouse) | 12 | 38 | High (40) | **118** | High |
| VH_Humanized_v1 | 5 | 13 | Medium (20) | **60** | Medium |
| VH_Humanized_v2 | 4 | 15 | Medium (18) | **53** | Medium |
| Deimmunized | 2 | 10 | Low (12) | **32** | **Low** |
**Risk Scoring**: 0-100 (lower is better)
- Low risk: <30 (clinical candidate ready)
- Medium risk: 30-60 (acceptable with monitoring)
- High risk: >60 (requires optimization)
### 6.3 Deimmunization Strategy
**Recommended Mutations** (to achieve low risk):
| Position | Original | Mutant | Region | Rationale | Impact |
|----------|----------|--------|--------|-----------|--------|
| VH 78 | T | A | FR3 | Human consensus, removes epitope | -15 risk |
| VH 84 | T | S | FR3 | Human consensus, removes epitope | -12 risk |
| VL 55 | S | A | FR2 | Removes MHC-II binding | -8 risk |
**Expected Outcome**:
- Deimmunization reduces risk score: 53 â 32 (Low)
- T-cell epitopes reduced: 4 â 2
- Maintains CDR sequences (no affinity impact)
### 6.4 Clinical Precedent Comparison
**Approved Antibodies - Immunogenicity Rates**:
| Antibody | Target | % ADA (Anti-Drug Antibodies) | Humanization |
|----------|--------|------------------------------|--------------|
| Atezolizumab | PD-L1 | 30% | Fully human |
| Durvalumab | PD-L1 | 6% | Fully human |
| Trastuzumab | HER2 | 13% | Humanized (93%) |
| Rituximab | CD20 | 11% | Chimeric (66%) |
**Our Candidate**:
- Humanization: 85-87% (similar to trastuzumab)
- Predicted ADA risk: 10-15% (after deimmunization)
- Acceptable for clinical development
*Source: IEDB, TheraSAbDab, clinical trial data*
Phase 7: Manufacturing Feasibility
7.1 Expression Optimization
def assess_manufacturing_feasibility(sequence):
"""Assess manufacturing and CMC feasibility."""
# Codon optimization for CHO
cho_optimized = optimize_codons(sequence, host='CHO')
rare_codons = count_rare_codons(sequence, host='CHO')
# Signal peptide design
signal_peptide = design_signal_peptide(sequence)
# Purification considerations
purification = {
'protein_a_binding': check_protein_a_binding(sequence),
'ion_exchange': suggest_ion_exchange_conditions(sequence),
'hydrophobic': suggest_hic_conditions(sequence)
}
# Formulation
formulation = {
'target_concentration': predict_max_concentration(sequence),
'buffer': suggest_buffer_conditions(sequence),
'stabilizers': suggest_stabilizers(sequence),
'shelf_life': predict_shelf_life(sequence)
}
return {
'expression': {'cho_optimized': cho_optimized, 'rare_codons': rare_codons},
'purification': purification,
'formulation': formulation
}
7.2 Output for Report
## 7. Manufacturing Feasibility
### 7.1 Expression Assessment
**Expression System**: CHO (Chinese Hamster Ovary) cells
| Parameter | Assessment | Details |
|-----------|------------|---------|
| **Codon optimization** | Good | 5% rare codons (CHO) |
| **Signal peptide** | Native IgG leader | METDTLLLWVLLLWVPGSTG |
| **Predicted titer** | 2.0 g/L | Fed-batch, 14-day culture |
| **Soluble fraction** | 88% | High solubility predicted |
**Recommendations**:
- Use standard CHO expression system (CHO-K1 or CHO-S)
- Express as full IgG1 (not Fab) for Protein A purification
- Standard fed-batch process (no special requirements)
### 7.2 Purification Strategy
**Recommended 3-Step Purification**:
| Step | Method | Purpose | Expected Yield | Purity |
|------|--------|---------|----------------|--------|
| 1. Capture | Protein A affinity | IgG capture | >95% | >90% |
| 2. Polishing | Cation exchange (SP) | Aggregate/variant removal | >90% | >98% |
| 3. Viral | Nanofiltration (20 nm) | Viral clearance | >95% | >99% |
**Overall Process Yield**: 75-80% (from clarified harvest to final product)
**Purification Conditions**:
- Protein A: Standard pH 3.5 elution
- Cation exchange: pH 5.0-5.5 binding, salt gradient elution
- No special requirements (standard IgG process)
### 7.3 Formulation Development
**Recommended Formulation**:
| Component | Concentration | Purpose |
|-----------|---------------|---------|
| **Antibody** | 150 mg/mL | High concentration for SC delivery |
| **Buffer** | 20 mM Histidine-HCl | pH buffering, stability |
| **pH** | 6.0 | Minimizes aggregation (below pI) |
| **Stabilizer** | 0.02% Polysorbate 80 | Reduces surface adsorption |
| **Tonicity** | 240 mM Sucrose | Isotonic, cryoprotectant |
**Formulation Characteristics**:
- Viscosity: <15 cP (suitable for SC injection)
- Osmolality: 300 mOsm/kg (isotonic)
- Stability: >2 years at 2-8°C (predicted)
- Freeze/thaw: Stable for 5 cycles
**Alternative Formulations** (if needed):
- Lower concentration (100 mg/mL) for IV delivery
- Add arginine-glutamate (50 mM) if aggregation observed
- Trehalose (5%) as alternative stabilizer
### 7.4 Analytical Characterization
**Required Assays** (ICH guidelines):
| Assay | Purpose | Specification |
|-------|---------|---------------|
| **SEC-MALS** | Monomer content | >95% monomer |
| **CEX** | Charge variants | Main peak >70% |
| **CE-SDS** | Purity (reduced/non-reduced) | >95% main peak |
| **IEF/cIEF** | Isoelectric point | pI 7.0-7.5 |
| **SPR/ELISA** | Binding affinity | KD <5 nM |
| **DSF** | Thermal stability | Tm >65°C |
| **Cell-based** | Bioactivity | EC50 <10 nM |
### 7.5 CMC Timeline & Costs
**Estimated Development Timeline**:
| Phase | Duration | Activities | Cost Estimate |
|-------|----------|------------|---------------|
| **Cell line development** | 4-6 months | Transfection, selection, cloning | $150K |
| **Process development** | 6-9 months | Optimization, scale-up | $300K |
| **Analytical development** | 3-6 months | Method development, validation | $200K |
| **GMP manufacturing** | 9-12 months | Tech transfer, clinical batches | $1-2M |
| **Total to IND** | 18-24 months | - | **$1.65-2.65M** |
**Manufacturing Scale**:
- Phase 1: 5-10g (small scale, 50L bioreactor)
- Phase 2: 50-100g (pilot scale, 200L)
- Phase 3: 500g-1kg (commercial scale, 2000L)
### 7.6 Risk Assessment
**Manufacturing Risks**:
| Risk | Probability | Impact | Mitigation |
|------|------------|--------|------------|
| Low expression | Low | Medium | Codon optimization, promoter engineering |
| Aggregation | Low | High | Optimized formulation, process controls |
| Glycosylation heterogeneity | Medium | Low | CHO cell line selection, process optimization |
| Charge variants | Medium | Low | Process pH control, storage conditions |
**Overall Manufacturing Risk**: Low (standard IgG process)
*Source: CMC assessment, manufacturing predictions*
Phase 8: Final Report & Recommendations
Report Template
# Antibody Optimization Report: [ANTIBODY_NAME]
**Generated**: [Date] | **Target**: [Target Antigen] | **Status**: Complete
---
## Executive Summary
[Summary of optimization strategy, key improvements, and recommendations...]
**Top Candidate**: [Variant name]
- Humanization: 87% (from 62%)
- Affinity: 1.2 nM (7x improvement)
- Developability score: 82/100 (Tier 1)
- Immunogenicity: Low risk
- Manufacturing: Standard process
**Recommendation**: Advance to preclinical development
---
## 1. Input Characterization
[Section from Phase 1...]
## 2. Humanization Strategy
[Section from Phase 2...]
## 3. Structure Modeling & Analysis
[Section from Phase 3...]
## 4. Affinity Optimization
[Section from Phase 4...]
## 5. Developability Assessment
[Section from Phase 5...]
## 6. Immunogenicity Prediction
[Section from Phase 6...]
## 7. Manufacturing Feasibility
[Section from Phase 7...]
---
## 8. Final Recommendations
### 8.1 Recommended Candidate
**Variant**: VH_Humanized_Affinity_Optimized_v3
**Sequence**:
VH_v3 | Humanized 87%, Affinity optimized, Deimmunized EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMWGIIPIFGTANY AQKFQGRVTMTTDTSTSSAYMELRSLRSDDTAVYYCARARDDGSYSPFDYWGQGTLVTVSS
VL_v3 | Humanized 90% DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGQGTKVEIK
### 8.2 Key Improvements
| Metric | Original | Optimized | Improvement |
|--------|----------|-----------|-------------|
| **Humanness** | 62% | 87% | +40% |
| **Affinity (KD)** | 5.2 nM | 0.8 nM | 6.5x |
| **Developability** | 62/100 | 82/100 | +32% |
| **Immunogenicity risk** | High | Low | -70% |
| **Stability (Tm)** | 68°C | 74°C | +6°C |
| **Expression** | 1.2 g/L | 2.0 g/L | +67% |
### 8.3 Experimental Validation Plan
**Phase 1: In Vitro Characterization** (3-4 months)
| Assay | Purpose | Timeline |
|-------|---------|----------|
| Affinity (SPR/BLI) | Confirm KD | Week 1-2 |
| Cell-based binding | Target engagement | Week 2-3 |
| Thermal stability (DSF) | Tm measurement | Week 3 |
| Aggregation (SEC) | Monomer content | Week 3-4 |
| Expression (CHO) | Titer confirmation | Week 4-8 |
| Immunogenicity (in silico + PBMC) | ADA prediction | Week 8-12 |
**Phase 2: Lead Optimization** (2-3 months)
- Test backup variants if needed
- Formulation development
- Scale-up to 100mg
**Phase 3: Preclinical Studies** (6-12 months)
- In vivo efficacy (tumor models)
- PK/PD studies
- Toxicology (GLP)
### 8.4 Alternative Variants (Backup)
| Variant | Profile | Recommendation |
|---------|---------|----------------|
| VH_v2 | Higher humanness (90%) but lower affinity (1.8 nM) | Backup if immunogenicity issues |
| VH_v4 | Highest affinity (0.5 nM) but lower developability (72/100) | Research tool only |
| VH_v1 | Balanced (affinity 2.1 nM, dev 78/100) | Second backup |
### 8.5 Intellectual Property Considerations
**FTO Analysis Required**:
- Check existing patents on anti-[target] antibodies
- CDR sequence novelty assessment
- Humanization method IP landscape
**Patentability**:
- Novel CDR-H3 sequence (14 aa, unique)
- Specific humanization with affinity improvement
- Combination of mutations (H100aY+H52W+L91E)
### 8.6 Next Steps
**Immediate (Month 1-3)**:
1. Synthesize genes for VH_v3, VL_v3, and 2 backups
2. Express in CHO cells (transient and stable)
3. Purify and characterize (affinity, stability, aggregation)
4. Confirm developability predictions
**Short-term (Month 4-6)**:
1. Develop stable CHO cell line (top candidate)
2. Scale up to 500mg for in vivo studies
3. Formulation development and stability studies
4. Initiate in vivo efficacy studies
**Long-term (Month 7-24)**:
1. GMP manufacturing readiness
2. IND-enabling studies (tox, CMC)
3. File IND
4. Phase 1 clinical trial
---
## 9. Data Sources & Tools Used
| Tool | Purpose | Queries |
|------|---------|---------|
| IMGT | Germline identification | IGHV, IGKV genes |
| TheraSAbDab | Clinical precedents | Anti-[target] antibodies |
| AlphaFold | Structure prediction | VH-VL complex |
| IEDB | Immunogenicity | Epitope prediction |
| SAbDab | Structural analysis | PDB structures |
| UniProt | Target information | [Target accession] |
Evidence Grading System
| Tier | Symbol | Criteria |
|---|---|---|
| T1 | â â â | Humanness >85%, KD <2 nM, Developability >75, Low immunogenicity |
| T2 | â â â | Humanness 70-85%, KD 2-10 nM, Developability 60-75, Medium immunogenicity |
| T3 | â ââ | Humanness <70%, KD >10 nM, Developability <60, or High immunogenicity |
| T4 | âââ | Failed validation or major liabilities |
Completeness Checklist
Phase 1: Input Analysis
- Sequence annotated (CDRs, frameworks)
- Species identified
- Target antigen characterized
- Clinical precedents identified
Phase 2: Humanization
- Germline genes identified (IMGT)
- Framework selected
- CDR grafting designed
- Backmutations analyzed
- â¥2 humanized variants designed
Phase 3: Structure
- AlphaFold structure predicted
- CDR conformations analyzed
- Epitope mapped
- Structural quality assessed
Phase 4: Affinity
- Current affinity estimated
- Affinity mutations proposed
- CDR optimization strategies identified
- Testing plan outlined
Phase 5: Developability
- Aggregation assessed
- PTM sites identified
- Stability predicted
- Expression predicted
- Overall score calculated (0-100)
Phase 6: Immunogenicity
- T-cell epitopes predicted (IEDB)
- Immunogenicity score calculated
- Deimmunization strategy proposed
- Clinical precedent comparison
Phase 7: Manufacturing
- Expression system assessed
- Purification strategy outlined
- Formulation recommended
- CMC timeline estimated
Phase 8: Final Report
- Ranked variant list
- Top candidate recommended
- Experimental validation plan
- Backup variants identified
- Next steps outlined
Tool Reference
IMGT Tools
IMGT_search_genes: Search germline genes (IGHV, IGKV, etc.)IMGT_get_sequence: Get germline sequencesIMGT_get_gene_info: Database information
Antibody Databases
SAbDab_search_structures: Search antibody structuresSAbDab_get_structure: Get structure detailsTheraSAbDab_search_therapeutics: Search by nameTheraSAbDab_search_by_target: Search by target antigen
Immunogenicity
iedb_search_epitopes: Search epitopesiedb_search_bcell: B-cell epitopesiedb_search_mhc: MHC-II epitopesiedb_get_epitope_references: Citations
Structure & Target
AlphaFold_get_prediction: Structure predictionUniProt_get_protein_by_accession: Target infoPDB_get_structure: Experimental structures
Systems Biology (for Bispecifics)
STRING_get_interactions: Protein interactionsSTRING_get_enrichment: Pathway analysis
Special Considerations
Bispecific Antibody Engineering
- Use STRING tools to identify co-expressed targets
- Design separate binding arms for each target
- Consider asymmetric formats (e.g., CrossMAb, DuoBody)
- Assess aggregation risk (higher for bispecifics)
pH-Dependent Binding
- Add His residues at interface (pKa ~6.0)
- Target: Bind at pH 7.4, release at pH 6.0
- Improves PK via FcRn recycling
- Useful for tumor targeting (acidic microenvironment)
Affinity Ceiling
- Most therapeutic antibodies: KD 0.1-10 nM
- <0.1 nM: May cause target-mediated clearance
- 1-5 nM: Sweet spot for most targets
- Balance affinity vs. developability