foundry-iq-py
0
总安装量
0
周安装量
#55911
全站排名
安装命令
npx skills add https://github.com/microsoft/skills --skill foundry-iq-py
Skill 文档
Foundry IQ Python SDK
Build agentic retrieval pipelines using Azure AI Search knowledge bases with the Python SDK.
Installation
pip install azure-ai-projects==2.0.0b1 azure-search-documents==11.7.0b2 azure-identity
Environment Variables
AZURE_SEARCH_ENDPOINT=https://<search-service>.search.windows.net
AZURE_OPENAI_ENDPOINT=https://<openai-resource>.openai.azure.com
AZURE_OPENAI_EMBEDDING_DEPLOYMENT=text-embedding-3-large
AZURE_AI_PROJECT_ENDPOINT=https://<resource>.services.ai.azure.com/api/projects/<project>
Authentication
from azure.identity import DefaultAzureCredential
from azure.search.documents.indexes import SearchIndexClient
credential = DefaultAzureCredential()
index_client = SearchIndexClient(endpoint=search_endpoint, credential=credential)
Architecture
User Query â Foundry Agent â MCP Tool â Knowledge Base â Knowledge Sources
â
Query Planning + Hybrid Search + Reranking
â
Extractive Data with Citations
Core Workflow
1. Create Search Index (Semantic Config Required)
from azure.search.documents.indexes import SearchIndexClient
from azure.search.documents.indexes.models import (
SearchIndex, SearchField, VectorSearch, VectorSearchProfile,
HnswAlgorithmConfiguration, AzureOpenAIVectorizer,
AzureOpenAIVectorizerParameters, SemanticSearch,
SemanticConfiguration, SemanticPrioritizedFields, SemanticField
)
index = SearchIndex(
name=index_name,
fields=[
SearchField(name="id", type="Edm.String", key=True, filterable=True),
SearchField(name="content", type="Edm.String", searchable=True),
SearchField(name="embedding", type="Collection(Edm.Single)",
stored=False, vector_search_dimensions=3072,
vector_search_profile_name="hnsw-profile"),
],
vector_search=VectorSearch(
profiles=[VectorSearchProfile(name="hnsw-profile", algorithm_configuration_name="hnsw-algo", vectorizer_name="aoai-vectorizer")],
algorithms=[HnswAlgorithmConfiguration(name="hnsw-algo")],
vectorizers=[AzureOpenAIVectorizer(
vectorizer_name="aoai-vectorizer",
parameters=AzureOpenAIVectorizerParameters(
resource_url=aoai_endpoint,
deployment_name="text-embedding-3-large",
model_name="text-embedding-3-large"
)
)]
),
semantic_search=SemanticSearch( # REQUIRED for agentic retrieval
default_configuration_name="semantic-config",
configurations=[SemanticConfiguration(
name="semantic-config",
prioritized_fields=SemanticPrioritizedFields(
content_fields=[SemanticField(field_name="content")]
)
)]
)
)
index_client.create_or_update_index(index)
2. Create Knowledge Source
from azure.search.documents.indexes.models import (
SearchIndexKnowledgeSource, SearchIndexKnowledgeSourceParameters, SearchIndexFieldReference
)
ks = SearchIndexKnowledgeSource(
name="my-knowledge-source",
description="Knowledge source for retrieval",
search_index_parameters=SearchIndexKnowledgeSourceParameters(
search_index_name=index_name,
source_data_fields=[SearchIndexFieldReference(name="id"), SearchIndexFieldReference(name="content")]
)
)
index_client.create_or_update_knowledge_source(knowledge_source=ks)
3. Create Knowledge Base
from azure.search.documents.indexes.models import (
KnowledgeBase, KnowledgeBaseAzureOpenAIModel, KnowledgeSourceReference,
AzureOpenAIVectorizerParameters, KnowledgeRetrievalOutputMode,
KnowledgeRetrievalLowReasoningEffort
)
aoai_params = AzureOpenAIVectorizerParameters(
resource_url=aoai_endpoint,
deployment_name="gpt-4.1-mini",
model_name="gpt-4.1-mini"
)
kb = KnowledgeBase(
name="my-knowledge-base",
knowledge_sources=[KnowledgeSourceReference(name="my-knowledge-source")],
models=[KnowledgeBaseAzureOpenAIModel(azure_open_ai_parameters=aoai_params)],
output_mode=KnowledgeRetrievalOutputMode.EXTRACTIVE_DATA, # Recommended for agent integration
retrieval_reasoning_effort=KnowledgeRetrievalLowReasoningEffort()
)
index_client.create_or_update_knowledge_base(knowledge_base=kb)
mcp_endpoint = f"{search_endpoint}/knowledgebases/{kb.name}/mcp?api-version=2025-11-01-preview"
4. Create Project Connection
import requests
from azure.identity import get_bearer_token_provider
bearer_token = get_bearer_token_provider(credential, "https://management.azure.com/.default")()
response = requests.put(
f"https://management.azure.com{project_resource_id}/connections/{connection_name}?api-version=2025-10-01-preview",
headers={"Authorization": f"Bearer {bearer_token}"},
json={
"name": connection_name,
"type": "Microsoft.MachineLearningServices/workspaces/connections",
"properties": {
"authType": "ProjectManagedIdentity",
"category": "RemoteTool",
"target": mcp_endpoint,
"isSharedToAll": True,
"audience": "https://search.azure.com/",
"metadata": {"ApiType": "Azure"}
}
}
)
response.raise_for_status()
5. Create Agent with MCP Tool
from azure.ai.projects import AIProjectClient
from azure.ai.projects.models import PromptAgentDefinition, MCPTool
client = AIProjectClient(endpoint=project_endpoint, credential=credential)
instructions = """You are a helpful assistant that must use the knowledge base to answer all questions from user. You must never answer from your own knowledge under any circumstances.
Every answer must always provide annotations for using the MCP knowledge base tool and render them as: ãmessage_idx:search_idxâ source_nameã
If you cannot find the answer in the provided knowledge base you must respond with "I don't know"."""
mcp_tool = MCPTool(
server_label="knowledge-base",
server_url=mcp_endpoint,
require_approval="never",
allowed_tools=["knowledge_base_retrieve"],
project_connection_id=connection_name
)
agent = client.agents.create_version(
agent_name="my-agent",
definition=PromptAgentDefinition(model="gpt-4.1-mini", instructions=instructions, tools=[mcp_tool])
)
6. Invoke Agent
openai_client = client.get_openai_client()
conversation = openai_client.conversations.create()
response = openai_client.responses.create(
conversation=conversation.id,
tool_choice="required", # Ensures agent always uses knowledge base
input="What are the key findings?",
extra_body={"agent": {"name": agent.name, "type": "agent_reference"}}
)
print(response.output_text)
Query Knowledge Base Directly
from azure.search.documents.knowledgebases import KnowledgeBaseRetrievalClient
from azure.search.documents.knowledgebases.models import (
KnowledgeBaseRetrievalRequest, KnowledgeBaseMessage,
KnowledgeBaseMessageTextContent, SearchIndexKnowledgeSourceParams
)
kb_client = KnowledgeBaseRetrievalClient(endpoint=search_endpoint, knowledge_base_name="my-knowledge-base", credential=credential)
request = KnowledgeBaseRetrievalRequest(
messages=[KnowledgeBaseMessage(role="user", content=[KnowledgeBaseMessageTextContent(text="What is vector search?")])],
knowledge_source_params=[SearchIndexKnowledgeSourceParams(
knowledge_source_name="my-knowledge-source",
include_references=True,
include_reference_source_data=True
)],
include_activity=True
)
result = kb_client.retrieve(request)
print(result.response[0].content[0].text)
SharePoint with User Token
For remote SharePoint sources, pass user token for ACL trimming:
from azure.identity import get_bearer_token_provider
mcp_tool = MCPTool(
server_label="knowledge-base",
server_url=mcp_endpoint,
require_approval="never",
allowed_tools=["knowledge_base_retrieve"],
project_connection_id=connection_name,
headers={"x-ms-query-source-authorization": get_bearer_token_provider(credential, "https://search.azure.com/.default")()}
)
Retrieval Reasoning Effort
| Level | Class | Best For |
|---|---|---|
| Minimal | KnowledgeRetrievalMinimalReasoningEffort() |
Simple lookups, lowest cost/latency |
| Low | KnowledgeRetrievalLowReasoningEffort() |
Standard queries (default) |
| Medium | KnowledgeRetrievalMediumReasoningEffort() |
Complex multi-hop questions |
Output Modes
| Mode | Value | Use Case |
|---|---|---|
| Extractive Data | KnowledgeRetrievalOutputMode.EXTRACTIVE_DATA |
Agent integration (recommended) |
| Answer Synthesis | KnowledgeRetrievalOutputMode.ANSWER_SYNTHESIS |
Direct KB responses with citations |
Supported LLMs
gpt-4o, gpt-4o-mini, gpt-4.1, gpt-4.1-mini, gpt-4.1-nano, gpt-5, gpt-5-mini, gpt-5-nano
API Version
api-version=2025-11-01-preview
Prerequisites
- Azure AI Search with semantic ranker enabled
- Microsoft Foundry project with LLM deployment and system-assigned managed identity
- Required roles:
- Search Service Contributor: Create objects
- Search Index Data Reader: Read indexed content (assign to project managed identity)
- Azure AI User: Access model deployments, create agents
- Azure AI Project Manager: Create project connections
Reference Files
- references/acceptance-criteria.md: Test acceptance criteria with 14 categories covering imports, client creation, KB configuration, MCP tools, async patterns, and hybrid search
- references/patterns.md: Complete SDK patterns for all operations
- references/knowledge-sources.md: Knowledge source configurations
- scripts/create_agent.py: End-to-end script
Test Coverage
This skill has 10 comprehensive test scenarios covering:
- Knowledge base retrieval client creation
- Query with citations and references
- Search index with semantic configuration
- Knowledge source creation
- Knowledge base creation
- MCP tool integration with agents
- Agent invocation with tool choice
- Async knowledge base retrieval
- Hybrid search with semantic reranking
- Project connection creation
Test scenarios located in tests/scenarios/foundry-iq-py/scenarios.yaml with 100% pass rate.