azure-search-documents-py
0
总安装量
4
周安装量
#55746
全站排名
安装命令
npx skills add https://github.com/microsoft/skills --skill azure-search-documents-py
Agent 安装分布
opencode
3
github-copilot
3
codex
3
gemini-cli
2
claude-code
2
kimi-cli
2
Skill 文档
Azure AI Search SDK for Python
Full-text, vector, and hybrid search with AI enrichment capabilities.
Installation
pip install azure-search-documents
Environment Variables
AZURE_SEARCH_ENDPOINT=https://<service-name>.search.windows.net
AZURE_SEARCH_API_KEY=<your-api-key>
AZURE_SEARCH_INDEX_NAME=<your-index-name>
Authentication
API Key
from azure.search.documents import SearchClient
from azure.core.credentials import AzureKeyCredential
client = SearchClient(
endpoint=os.environ["AZURE_SEARCH_ENDPOINT"],
index_name=os.environ["AZURE_SEARCH_INDEX_NAME"],
credential=AzureKeyCredential(os.environ["AZURE_SEARCH_API_KEY"])
)
Entra ID (Recommended)
from azure.search.documents import SearchClient
from azure.identity import DefaultAzureCredential
client = SearchClient(
endpoint=os.environ["AZURE_SEARCH_ENDPOINT"],
index_name=os.environ["AZURE_SEARCH_INDEX_NAME"],
credential=DefaultAzureCredential()
)
Client Types
| Client | Purpose |
|---|---|
SearchClient |
Search and document operations |
SearchIndexClient |
Index management, synonym maps |
SearchIndexerClient |
Indexers, data sources, skillsets |
Create Index with Vector Field
from azure.search.documents.indexes import SearchIndexClient
from azure.search.documents.indexes.models import (
SearchIndex,
SearchField,
SearchFieldDataType,
VectorSearch,
HnswAlgorithmConfiguration,
VectorSearchProfile,
SearchableField,
SimpleField
)
index_client = SearchIndexClient(endpoint, AzureKeyCredential(key))
fields = [
SimpleField(name="id", type=SearchFieldDataType.String, key=True),
SearchableField(name="title", type=SearchFieldDataType.String),
SearchableField(name="content", type=SearchFieldDataType.String),
SearchField(
name="content_vector",
type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
searchable=True,
vector_search_dimensions=1536,
vector_search_profile_name="my-vector-profile"
)
]
vector_search = VectorSearch(
algorithms=[
HnswAlgorithmConfiguration(name="my-hnsw")
],
profiles=[
VectorSearchProfile(
name="my-vector-profile",
algorithm_configuration_name="my-hnsw"
)
]
)
index = SearchIndex(
name="my-index",
fields=fields,
vector_search=vector_search
)
index_client.create_or_update_index(index)
Upload Documents
from azure.search.documents import SearchClient
client = SearchClient(endpoint, "my-index", AzureKeyCredential(key))
documents = [
{
"id": "1",
"title": "Azure AI Search",
"content": "Full-text and vector search service",
"content_vector": [0.1, 0.2, ...] # 1536 dimensions
}
]
result = client.upload_documents(documents)
print(f"Uploaded {len(result)} documents")
Keyword Search
results = client.search(
search_text="azure search",
select=["id", "title", "content"],
top=10
)
for result in results:
print(f"{result['title']}: {result['@search.score']}")
Vector Search
from azure.search.documents.models import VectorizedQuery
# Your query embedding (1536 dimensions)
query_vector = get_embedding("semantic search capabilities")
vector_query = VectorizedQuery(
vector=query_vector,
k_nearest_neighbors=10,
fields="content_vector"
)
results = client.search(
vector_queries=[vector_query],
select=["id", "title", "content"]
)
for result in results:
print(f"{result['title']}: {result['@search.score']}")
Hybrid Search (Vector + Keyword)
from azure.search.documents.models import VectorizedQuery
vector_query = VectorizedQuery(
vector=query_vector,
k_nearest_neighbors=10,
fields="content_vector"
)
results = client.search(
search_text="azure search",
vector_queries=[vector_query],
select=["id", "title", "content"],
top=10
)
Semantic Ranking
from azure.search.documents.models import QueryType
results = client.search(
search_text="what is azure search",
query_type=QueryType.SEMANTIC,
semantic_configuration_name="my-semantic-config",
select=["id", "title", "content"],
top=10
)
for result in results:
print(f"{result['title']}")
if result.get("@search.captions"):
print(f" Caption: {result['@search.captions'][0].text}")
Filters
results = client.search(
search_text="*",
filter="category eq 'Technology' and rating gt 4",
order_by=["rating desc"],
select=["id", "title", "category", "rating"]
)
Facets
results = client.search(
search_text="*",
facets=["category,count:10", "rating"],
top=0 # Only get facets, no documents
)
for facet_name, facet_values in results.get_facets().items():
print(f"{facet_name}:")
for facet in facet_values:
print(f" {facet['value']}: {facet['count']}")
Autocomplete & Suggest
# Autocomplete
results = client.autocomplete(
search_text="sea",
suggester_name="my-suggester",
mode="twoTerms"
)
# Suggest
results = client.suggest(
search_text="sea",
suggester_name="my-suggester",
select=["title"]
)
Indexer with Skillset
from azure.search.documents.indexes import SearchIndexerClient
from azure.search.documents.indexes.models import (
SearchIndexer,
SearchIndexerDataSourceConnection,
SearchIndexerSkillset,
EntityRecognitionSkill,
InputFieldMappingEntry,
OutputFieldMappingEntry
)
indexer_client = SearchIndexerClient(endpoint, AzureKeyCredential(key))
# Create data source
data_source = SearchIndexerDataSourceConnection(
name="my-datasource",
type="azureblob",
connection_string=connection_string,
container={"name": "documents"}
)
indexer_client.create_or_update_data_source_connection(data_source)
# Create skillset
skillset = SearchIndexerSkillset(
name="my-skillset",
skills=[
EntityRecognitionSkill(
inputs=[InputFieldMappingEntry(name="text", source="/document/content")],
outputs=[OutputFieldMappingEntry(name="organizations", target_name="organizations")]
)
]
)
indexer_client.create_or_update_skillset(skillset)
# Create indexer
indexer = SearchIndexer(
name="my-indexer",
data_source_name="my-datasource",
target_index_name="my-index",
skillset_name="my-skillset"
)
indexer_client.create_or_update_indexer(indexer)
Best Practices
- Use hybrid search for best relevance combining vector and keyword
- Enable semantic ranking for natural language queries
- Index in batches of 100-1000 documents for efficiency
- Use filters to narrow results before ranking
- Configure vector dimensions to match your embedding model
- Use HNSW algorithm for large-scale vector search
- Create suggesters at index creation time (cannot add later)
Reference Files
| File | Contents |
|---|---|
| references/vector-search.md | HNSW configuration, integrated vectorization, multi-vector queries |
| references/semantic-ranking.md | Semantic configuration, captions, answers, hybrid patterns |
| scripts/setup_vector_index.py | CLI script to create vector-enabled search index |
Additional Azure AI Search Patterns
Azure AI Search Python SDK
Write clean, idiomatic Python code for Azure AI Search using azure-search-documents.
Installation
pip install azure-search-documents azure-identity
Environment Variables
AZURE_SEARCH_ENDPOINT=https://<search-service>.search.windows.net
AZURE_SEARCH_INDEX_NAME=<index-name>
# For API key auth (not recommended for production)
AZURE_SEARCH_API_KEY=<api-key>
Authentication
DefaultAzureCredential (preferred):
from azure.identity import DefaultAzureCredential
from azure.search.documents import SearchClient
credential = DefaultAzureCredential()
client = SearchClient(endpoint, index_name, credential)
API Key:
from azure.core.credentials import AzureKeyCredential
from azure.search.documents import SearchClient
client = SearchClient(endpoint, index_name, AzureKeyCredential(api_key))
Client Selection
| Client | Purpose |
|---|---|
SearchClient |
Query indexes, upload/update/delete documents |
SearchIndexClient |
Create/manage indexes, knowledge sources, knowledge bases |
SearchIndexerClient |
Manage indexers, skillsets, data sources |
KnowledgeBaseRetrievalClient |
Agentic retrieval with LLM-powered Q&A |
Index Creation Pattern
from azure.search.documents.indexes import SearchIndexClient
from azure.search.documents.indexes.models import (
SearchIndex, SearchField, VectorSearch, VectorSearchProfile,
HnswAlgorithmConfiguration, AzureOpenAIVectorizer,
AzureOpenAIVectorizerParameters, SemanticSearch,
SemanticConfiguration, SemanticPrioritizedFields, SemanticField
)
index = SearchIndex(
name=index_name,
fields=[
SearchField(name="id", type="Edm.String", key=True),
SearchField(name="content", type="Edm.String", searchable=True),
SearchField(name="embedding", type="Collection(Edm.Single)",
vector_search_dimensions=3072,
vector_search_profile_name="vector-profile"),
],
vector_search=VectorSearch(
profiles=[VectorSearchProfile(
name="vector-profile",
algorithm_configuration_name="hnsw-algo",
vectorizer_name="openai-vectorizer"
)],
algorithms=[HnswAlgorithmConfiguration(name="hnsw-algo")],
vectorizers=[AzureOpenAIVectorizer(
vectorizer_name="openai-vectorizer",
parameters=AzureOpenAIVectorizerParameters(
resource_url=aoai_endpoint,
deployment_name=embedding_deployment,
model_name=embedding_model
)
)]
),
semantic_search=SemanticSearch(
default_configuration_name="semantic-config",
configurations=[SemanticConfiguration(
name="semantic-config",
prioritized_fields=SemanticPrioritizedFields(
content_fields=[SemanticField(field_name="content")]
)
)]
)
)
index_client = SearchIndexClient(endpoint, credential)
index_client.create_or_update_index(index)
Document Operations
from azure.search.documents import SearchIndexingBufferedSender
# Batch upload with automatic batching
with SearchIndexingBufferedSender(endpoint, index_name, credential) as sender:
sender.upload_documents(documents)
# Direct operations via SearchClient
search_client = SearchClient(endpoint, index_name, credential)
search_client.upload_documents(documents) # Add new
search_client.merge_documents(documents) # Update existing
search_client.merge_or_upload_documents(documents) # Upsert
search_client.delete_documents(documents) # Remove
Search Patterns
# Basic search
results = search_client.search(search_text="query")
# Vector search
from azure.search.documents.models import VectorizedQuery
results = search_client.search(
search_text=None,
vector_queries=[VectorizedQuery(
vector=embedding,
k_nearest_neighbors=5,
fields="embedding"
)]
)
# Hybrid search (vector + keyword)
results = search_client.search(
search_text="query",
vector_queries=[VectorizedQuery(vector=embedding, k_nearest_neighbors=5, fields="embedding")],
query_type="semantic",
semantic_configuration_name="semantic-config"
)
# With filters
results = search_client.search(
search_text="query",
filter="category eq 'technology'",
select=["id", "title", "content"],
top=10
)
Agentic Retrieval (Knowledge Bases)
For LLM-powered Q&A with answer synthesis, see references/agentic-retrieval.md.
Key concepts:
- Knowledge Source: Points to a search index
- Knowledge Base: Wraps knowledge sources + LLM for query planning and synthesis
- Output modes:
EXTRACTIVE_DATA(raw chunks) orANSWER_SYNTHESIS(LLM-generated answers)
Async Pattern
from azure.search.documents.aio import SearchClient
async with SearchClient(endpoint, index_name, credential) as client:
results = await client.search(search_text="query")
async for result in results:
print(result["title"])
Best Practices
- Use environment variables for endpoints, keys, and deployment names
- Prefer
DefaultAzureCredentialover API keys for production - Use
SearchIndexingBufferedSenderfor batch uploads (handles batching/retries) - Always define semantic configuration for agentic retrieval indexes
- Use
create_or_update_indexfor idempotent index creation - Close clients with context managers or explicit
close()
Field Types Reference
| EDM Type | Python | Notes |
|---|---|---|
Edm.String |
str | Searchable text |
Edm.Int32 |
int | Integer |
Edm.Int64 |
int | Long integer |
Edm.Double |
float | Floating point |
Edm.Boolean |
bool | True/False |
Edm.DateTimeOffset |
datetime | ISO 8601 |
Collection(Edm.Single) |
List[float] | Vector embeddings |
Collection(Edm.String) |
List[str] | String arrays |
Error Handling
from azure.core.exceptions import (
HttpResponseError,
ResourceNotFoundError,
ResourceExistsError
)
try:
result = search_client.get_document(key="123")
except ResourceNotFoundError:
print("Document not found")
except HttpResponseError as e:
print(f"Search error: {e.message}")