azure-search-documents-py

📁 microsoft/skills 📅 9 days ago
0
总安装量
4
周安装量
#55746
全站排名
安装命令
npx skills add https://github.com/microsoft/skills --skill azure-search-documents-py

Agent 安装分布

opencode 3
github-copilot 3
codex 3
gemini-cli 2
claude-code 2
kimi-cli 2

Skill 文档

Azure AI Search SDK for Python

Full-text, vector, and hybrid search with AI enrichment capabilities.

Installation

pip install azure-search-documents

Environment Variables

AZURE_SEARCH_ENDPOINT=https://<service-name>.search.windows.net
AZURE_SEARCH_API_KEY=<your-api-key>
AZURE_SEARCH_INDEX_NAME=<your-index-name>

Authentication

API Key

from azure.search.documents import SearchClient
from azure.core.credentials import AzureKeyCredential

client = SearchClient(
    endpoint=os.environ["AZURE_SEARCH_ENDPOINT"],
    index_name=os.environ["AZURE_SEARCH_INDEX_NAME"],
    credential=AzureKeyCredential(os.environ["AZURE_SEARCH_API_KEY"])
)

Entra ID (Recommended)

from azure.search.documents import SearchClient
from azure.identity import DefaultAzureCredential

client = SearchClient(
    endpoint=os.environ["AZURE_SEARCH_ENDPOINT"],
    index_name=os.environ["AZURE_SEARCH_INDEX_NAME"],
    credential=DefaultAzureCredential()
)

Client Types

Client Purpose
SearchClient Search and document operations
SearchIndexClient Index management, synonym maps
SearchIndexerClient Indexers, data sources, skillsets

Create Index with Vector Field

from azure.search.documents.indexes import SearchIndexClient
from azure.search.documents.indexes.models import (
    SearchIndex,
    SearchField,
    SearchFieldDataType,
    VectorSearch,
    HnswAlgorithmConfiguration,
    VectorSearchProfile,
    SearchableField,
    SimpleField
)

index_client = SearchIndexClient(endpoint, AzureKeyCredential(key))

fields = [
    SimpleField(name="id", type=SearchFieldDataType.String, key=True),
    SearchableField(name="title", type=SearchFieldDataType.String),
    SearchableField(name="content", type=SearchFieldDataType.String),
    SearchField(
        name="content_vector",
        type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
        searchable=True,
        vector_search_dimensions=1536,
        vector_search_profile_name="my-vector-profile"
    )
]

vector_search = VectorSearch(
    algorithms=[
        HnswAlgorithmConfiguration(name="my-hnsw")
    ],
    profiles=[
        VectorSearchProfile(
            name="my-vector-profile",
            algorithm_configuration_name="my-hnsw"
        )
    ]
)

index = SearchIndex(
    name="my-index",
    fields=fields,
    vector_search=vector_search
)

index_client.create_or_update_index(index)

Upload Documents

from azure.search.documents import SearchClient

client = SearchClient(endpoint, "my-index", AzureKeyCredential(key))

documents = [
    {
        "id": "1",
        "title": "Azure AI Search",
        "content": "Full-text and vector search service",
        "content_vector": [0.1, 0.2, ...]  # 1536 dimensions
    }
]

result = client.upload_documents(documents)
print(f"Uploaded {len(result)} documents")

Keyword Search

results = client.search(
    search_text="azure search",
    select=["id", "title", "content"],
    top=10
)

for result in results:
    print(f"{result['title']}: {result['@search.score']}")

Vector Search

from azure.search.documents.models import VectorizedQuery

# Your query embedding (1536 dimensions)
query_vector = get_embedding("semantic search capabilities")

vector_query = VectorizedQuery(
    vector=query_vector,
    k_nearest_neighbors=10,
    fields="content_vector"
)

results = client.search(
    vector_queries=[vector_query],
    select=["id", "title", "content"]
)

for result in results:
    print(f"{result['title']}: {result['@search.score']}")

Hybrid Search (Vector + Keyword)

from azure.search.documents.models import VectorizedQuery

vector_query = VectorizedQuery(
    vector=query_vector,
    k_nearest_neighbors=10,
    fields="content_vector"
)

results = client.search(
    search_text="azure search",
    vector_queries=[vector_query],
    select=["id", "title", "content"],
    top=10
)

Semantic Ranking

from azure.search.documents.models import QueryType

results = client.search(
    search_text="what is azure search",
    query_type=QueryType.SEMANTIC,
    semantic_configuration_name="my-semantic-config",
    select=["id", "title", "content"],
    top=10
)

for result in results:
    print(f"{result['title']}")
    if result.get("@search.captions"):
        print(f"  Caption: {result['@search.captions'][0].text}")

Filters

results = client.search(
    search_text="*",
    filter="category eq 'Technology' and rating gt 4",
    order_by=["rating desc"],
    select=["id", "title", "category", "rating"]
)

Facets

results = client.search(
    search_text="*",
    facets=["category,count:10", "rating"],
    top=0  # Only get facets, no documents
)

for facet_name, facet_values in results.get_facets().items():
    print(f"{facet_name}:")
    for facet in facet_values:
        print(f"  {facet['value']}: {facet['count']}")

Autocomplete & Suggest

# Autocomplete
results = client.autocomplete(
    search_text="sea",
    suggester_name="my-suggester",
    mode="twoTerms"
)

# Suggest
results = client.suggest(
    search_text="sea",
    suggester_name="my-suggester",
    select=["title"]
)

Indexer with Skillset

from azure.search.documents.indexes import SearchIndexerClient
from azure.search.documents.indexes.models import (
    SearchIndexer,
    SearchIndexerDataSourceConnection,
    SearchIndexerSkillset,
    EntityRecognitionSkill,
    InputFieldMappingEntry,
    OutputFieldMappingEntry
)

indexer_client = SearchIndexerClient(endpoint, AzureKeyCredential(key))

# Create data source
data_source = SearchIndexerDataSourceConnection(
    name="my-datasource",
    type="azureblob",
    connection_string=connection_string,
    container={"name": "documents"}
)
indexer_client.create_or_update_data_source_connection(data_source)

# Create skillset
skillset = SearchIndexerSkillset(
    name="my-skillset",
    skills=[
        EntityRecognitionSkill(
            inputs=[InputFieldMappingEntry(name="text", source="/document/content")],
            outputs=[OutputFieldMappingEntry(name="organizations", target_name="organizations")]
        )
    ]
)
indexer_client.create_or_update_skillset(skillset)

# Create indexer
indexer = SearchIndexer(
    name="my-indexer",
    data_source_name="my-datasource",
    target_index_name="my-index",
    skillset_name="my-skillset"
)
indexer_client.create_or_update_indexer(indexer)

Best Practices

  1. Use hybrid search for best relevance combining vector and keyword
  2. Enable semantic ranking for natural language queries
  3. Index in batches of 100-1000 documents for efficiency
  4. Use filters to narrow results before ranking
  5. Configure vector dimensions to match your embedding model
  6. Use HNSW algorithm for large-scale vector search
  7. Create suggesters at index creation time (cannot add later)

Reference Files

File Contents
references/vector-search.md HNSW configuration, integrated vectorization, multi-vector queries
references/semantic-ranking.md Semantic configuration, captions, answers, hybrid patterns
scripts/setup_vector_index.py CLI script to create vector-enabled search index

Additional Azure AI Search Patterns

Azure AI Search Python SDK

Write clean, idiomatic Python code for Azure AI Search using azure-search-documents.

Installation

pip install azure-search-documents azure-identity

Environment Variables

AZURE_SEARCH_ENDPOINT=https://<search-service>.search.windows.net
AZURE_SEARCH_INDEX_NAME=<index-name>
# For API key auth (not recommended for production)
AZURE_SEARCH_API_KEY=<api-key>

Authentication

DefaultAzureCredential (preferred):

from azure.identity import DefaultAzureCredential
from azure.search.documents import SearchClient

credential = DefaultAzureCredential()
client = SearchClient(endpoint, index_name, credential)

API Key:

from azure.core.credentials import AzureKeyCredential
from azure.search.documents import SearchClient

client = SearchClient(endpoint, index_name, AzureKeyCredential(api_key))

Client Selection

Client Purpose
SearchClient Query indexes, upload/update/delete documents
SearchIndexClient Create/manage indexes, knowledge sources, knowledge bases
SearchIndexerClient Manage indexers, skillsets, data sources
KnowledgeBaseRetrievalClient Agentic retrieval with LLM-powered Q&A

Index Creation Pattern

from azure.search.documents.indexes import SearchIndexClient
from azure.search.documents.indexes.models import (
    SearchIndex, SearchField, VectorSearch, VectorSearchProfile,
    HnswAlgorithmConfiguration, AzureOpenAIVectorizer,
    AzureOpenAIVectorizerParameters, SemanticSearch,
    SemanticConfiguration, SemanticPrioritizedFields, SemanticField
)

index = SearchIndex(
    name=index_name,
    fields=[
        SearchField(name="id", type="Edm.String", key=True),
        SearchField(name="content", type="Edm.String", searchable=True),
        SearchField(name="embedding", type="Collection(Edm.Single)",
                   vector_search_dimensions=3072,
                   vector_search_profile_name="vector-profile"),
    ],
    vector_search=VectorSearch(
        profiles=[VectorSearchProfile(
            name="vector-profile",
            algorithm_configuration_name="hnsw-algo",
            vectorizer_name="openai-vectorizer"
        )],
        algorithms=[HnswAlgorithmConfiguration(name="hnsw-algo")],
        vectorizers=[AzureOpenAIVectorizer(
            vectorizer_name="openai-vectorizer",
            parameters=AzureOpenAIVectorizerParameters(
                resource_url=aoai_endpoint,
                deployment_name=embedding_deployment,
                model_name=embedding_model
            )
        )]
    ),
    semantic_search=SemanticSearch(
        default_configuration_name="semantic-config",
        configurations=[SemanticConfiguration(
            name="semantic-config",
            prioritized_fields=SemanticPrioritizedFields(
                content_fields=[SemanticField(field_name="content")]
            )
        )]
    )
)

index_client = SearchIndexClient(endpoint, credential)
index_client.create_or_update_index(index)

Document Operations

from azure.search.documents import SearchIndexingBufferedSender

# Batch upload with automatic batching
with SearchIndexingBufferedSender(endpoint, index_name, credential) as sender:
    sender.upload_documents(documents)

# Direct operations via SearchClient
search_client = SearchClient(endpoint, index_name, credential)
search_client.upload_documents(documents)      # Add new
search_client.merge_documents(documents)       # Update existing
search_client.merge_or_upload_documents(documents)  # Upsert
search_client.delete_documents(documents)      # Remove

Search Patterns

# Basic search
results = search_client.search(search_text="query")

# Vector search
from azure.search.documents.models import VectorizedQuery

results = search_client.search(
    search_text=None,
    vector_queries=[VectorizedQuery(
        vector=embedding,
        k_nearest_neighbors=5,
        fields="embedding"
    )]
)

# Hybrid search (vector + keyword)
results = search_client.search(
    search_text="query",
    vector_queries=[VectorizedQuery(vector=embedding, k_nearest_neighbors=5, fields="embedding")],
    query_type="semantic",
    semantic_configuration_name="semantic-config"
)

# With filters
results = search_client.search(
    search_text="query",
    filter="category eq 'technology'",
    select=["id", "title", "content"],
    top=10
)

Agentic Retrieval (Knowledge Bases)

For LLM-powered Q&A with answer synthesis, see references/agentic-retrieval.md.

Key concepts:

  • Knowledge Source: Points to a search index
  • Knowledge Base: Wraps knowledge sources + LLM for query planning and synthesis
  • Output modes: EXTRACTIVE_DATA (raw chunks) or ANSWER_SYNTHESIS (LLM-generated answers)

Async Pattern

from azure.search.documents.aio import SearchClient

async with SearchClient(endpoint, index_name, credential) as client:
    results = await client.search(search_text="query")
    async for result in results:
        print(result["title"])

Best Practices

  1. Use environment variables for endpoints, keys, and deployment names
  2. Prefer DefaultAzureCredential over API keys for production
  3. Use SearchIndexingBufferedSender for batch uploads (handles batching/retries)
  4. Always define semantic configuration for agentic retrieval indexes
  5. Use create_or_update_index for idempotent index creation
  6. Close clients with context managers or explicit close()

Field Types Reference

EDM Type Python Notes
Edm.String str Searchable text
Edm.Int32 int Integer
Edm.Int64 int Long integer
Edm.Double float Floating point
Edm.Boolean bool True/False
Edm.DateTimeOffset datetime ISO 8601
Collection(Edm.Single) List[float] Vector embeddings
Collection(Edm.String) List[str] String arrays

Error Handling

from azure.core.exceptions import (
    HttpResponseError,
    ResourceNotFoundError,
    ResourceExistsError
)

try:
    result = search_client.get_document(key="123")
except ResourceNotFoundError:
    print("Document not found")
except HttpResponseError as e:
    print(f"Search error: {e.message}")