azure-monitor-opentelemetry-py

📁 microsoft/skills 📅 9 days ago
0
总安装量
3
周安装量
#55795
全站排名
安装命令
npx skills add https://github.com/microsoft/skills --skill azure-monitor-opentelemetry-py

Agent 安装分布

opencode 2
gemini-cli 2
claude-code 2
codex 2
antigravity 1

Skill 文档

Azure Monitor OpenTelemetry Distro for Python

One-line setup for Application Insights with OpenTelemetry auto-instrumentation.

Installation

pip install azure-monitor-opentelemetry

Environment Variables

APPLICATIONINSIGHTS_CONNECTION_STRING=InstrumentationKey=xxx;IngestionEndpoint=https://xxx.in.applicationinsights.azure.com/

Quick Start

from azure.monitor.opentelemetry import configure_azure_monitor

# One-line setup - reads connection string from environment
configure_azure_monitor()

# Your application code...

Explicit Configuration

from azure.monitor.opentelemetry import configure_azure_monitor

configure_azure_monitor(
    connection_string="InstrumentationKey=xxx;IngestionEndpoint=https://xxx.in.applicationinsights.azure.com/"
)

With Flask

from flask import Flask
from azure.monitor.opentelemetry import configure_azure_monitor

configure_azure_monitor()

app = Flask(__name__)

@app.route("/")
def hello():
    return "Hello, World!"

if __name__ == "__main__":
    app.run()

With Django

# settings.py
from azure.monitor.opentelemetry import configure_azure_monitor

configure_azure_monitor()

# Django settings...

With FastAPI

from fastapi import FastAPI
from azure.monitor.opentelemetry import configure_azure_monitor

configure_azure_monitor()

app = FastAPI()

@app.get("/")
async def root():
    return {"message": "Hello World"}

Custom Traces

from opentelemetry import trace
from azure.monitor.opentelemetry import configure_azure_monitor

configure_azure_monitor()

tracer = trace.get_tracer(__name__)

with tracer.start_as_current_span("my-operation") as span:
    span.set_attribute("custom.attribute", "value")
    # Do work...

Custom Metrics

from opentelemetry import metrics
from azure.monitor.opentelemetry import configure_azure_monitor

configure_azure_monitor()

meter = metrics.get_meter(__name__)
counter = meter.create_counter("my_counter")

counter.add(1, {"dimension": "value"})

Custom Logs

import logging
from azure.monitor.opentelemetry import configure_azure_monitor

configure_azure_monitor()

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

logger.info("This will appear in Application Insights")
logger.error("Errors are captured too", exc_info=True)

Sampling

from azure.monitor.opentelemetry import configure_azure_monitor

# Sample 10% of requests
configure_azure_monitor(
    sampling_ratio=0.1
)

Cloud Role Name

Set cloud role name for Application Map:

from azure.monitor.opentelemetry import configure_azure_monitor
from opentelemetry.sdk.resources import Resource, SERVICE_NAME

configure_azure_monitor(
    resource=Resource.create({SERVICE_NAME: "my-service-name"})
)

Disable Specific Instrumentations

from azure.monitor.opentelemetry import configure_azure_monitor

configure_azure_monitor(
    instrumentations=["flask", "requests"]  # Only enable these
)

Enable Live Metrics

from azure.monitor.opentelemetry import configure_azure_monitor

configure_azure_monitor(
    enable_live_metrics=True
)

Azure AD Authentication

from azure.monitor.opentelemetry import configure_azure_monitor
from azure.identity import DefaultAzureCredential

configure_azure_monitor(
    credential=DefaultAzureCredential()
)

Auto-Instrumentations Included

Library Telemetry Type
Flask Traces
Django Traces
FastAPI Traces
Requests Traces
urllib3 Traces
httpx Traces
aiohttp Traces
psycopg2 Traces
pymysql Traces
pymongo Traces
redis Traces

Configuration Options

Parameter Description Default
connection_string Application Insights connection string From env var
credential Azure credential for AAD auth None
sampling_ratio Sampling rate (0.0 to 1.0) 1.0
resource OpenTelemetry Resource Auto-detected
instrumentations List of instrumentations to enable All
enable_live_metrics Enable Live Metrics stream False

Best Practices

  1. Call configure_azure_monitor() early — Before importing instrumented libraries
  2. Use environment variables for connection string in production
  3. Set cloud role name for multi-service applications
  4. Enable sampling in high-traffic applications
  5. Use structured logging for better log analytics queries
  6. Add custom attributes to spans for better debugging
  7. Use AAD authentication for production workloads