azure-ai-textanalytics-py

📁 microsoft/skills 📅 9 days ago
0
总安装量
3
周安装量
#55840
全站排名
安装命令
npx skills add https://github.com/microsoft/skills --skill azure-ai-textanalytics-py

Agent 安装分布

opencode 2
gemini-cli 2
claude-code 2
github-copilot 2
codex 2
antigravity 1

Skill 文档

Azure AI Text Analytics SDK for Python

Client library for Azure AI Language service NLP capabilities including sentiment, entities, key phrases, and more.

Installation

pip install azure-ai-textanalytics

Environment Variables

AZURE_LANGUAGE_ENDPOINT=https://<resource>.cognitiveservices.azure.com
AZURE_LANGUAGE_KEY=<your-api-key>  # If using API key

Authentication

API Key

import os
from azure.core.credentials import AzureKeyCredential
from azure.ai.textanalytics import TextAnalyticsClient

endpoint = os.environ["AZURE_LANGUAGE_ENDPOINT"]
key = os.environ["AZURE_LANGUAGE_KEY"]

client = TextAnalyticsClient(endpoint, AzureKeyCredential(key))

Entra ID (Recommended)

from azure.ai.textanalytics import TextAnalyticsClient
from azure.identity import DefaultAzureCredential

client = TextAnalyticsClient(
    endpoint=os.environ["AZURE_LANGUAGE_ENDPOINT"],
    credential=DefaultAzureCredential()
)

Sentiment Analysis

documents = [
    "I had a wonderful trip to Seattle last week!",
    "The food was terrible and the service was slow."
]

result = client.analyze_sentiment(documents, show_opinion_mining=True)

for doc in result:
    if not doc.is_error:
        print(f"Sentiment: {doc.sentiment}")
        print(f"Scores: pos={doc.confidence_scores.positive:.2f}, "
              f"neg={doc.confidence_scores.negative:.2f}, "
              f"neu={doc.confidence_scores.neutral:.2f}")
        
        # Opinion mining (aspect-based sentiment)
        for sentence in doc.sentences:
            for opinion in sentence.mined_opinions:
                target = opinion.target
                print(f"  Target: '{target.text}' - {target.sentiment}")
                for assessment in opinion.assessments:
                    print(f"    Assessment: '{assessment.text}' - {assessment.sentiment}")

Entity Recognition

documents = ["Microsoft was founded by Bill Gates and Paul Allen in Albuquerque."]

result = client.recognize_entities(documents)

for doc in result:
    if not doc.is_error:
        for entity in doc.entities:
            print(f"Entity: {entity.text}")
            print(f"  Category: {entity.category}")
            print(f"  Subcategory: {entity.subcategory}")
            print(f"  Confidence: {entity.confidence_score:.2f}")

PII Detection

documents = ["My SSN is 123-45-6789 and my email is john@example.com"]

result = client.recognize_pii_entities(documents)

for doc in result:
    if not doc.is_error:
        print(f"Redacted: {doc.redacted_text}")
        for entity in doc.entities:
            print(f"PII: {entity.text} ({entity.category})")

Key Phrase Extraction

documents = ["Azure AI provides powerful machine learning capabilities for developers."]

result = client.extract_key_phrases(documents)

for doc in result:
    if not doc.is_error:
        print(f"Key phrases: {doc.key_phrases}")

Language Detection

documents = ["Ce document est en francais.", "This is written in English."]

result = client.detect_language(documents)

for doc in result:
    if not doc.is_error:
        print(f"Language: {doc.primary_language.name} ({doc.primary_language.iso6391_name})")
        print(f"Confidence: {doc.primary_language.confidence_score:.2f}")

Healthcare Text Analytics

documents = ["Patient has diabetes and was prescribed metformin 500mg twice daily."]

poller = client.begin_analyze_healthcare_entities(documents)
result = poller.result()

for doc in result:
    if not doc.is_error:
        for entity in doc.entities:
            print(f"Entity: {entity.text}")
            print(f"  Category: {entity.category}")
            print(f"  Normalized: {entity.normalized_text}")
            
            # Entity links (UMLS, etc.)
            for link in entity.data_sources:
                print(f"  Link: {link.name} - {link.entity_id}")

Multiple Analysis (Batch)

from azure.ai.textanalytics import (
    RecognizeEntitiesAction,
    ExtractKeyPhrasesAction,
    AnalyzeSentimentAction
)

documents = ["Microsoft announced new Azure AI features at Build conference."]

poller = client.begin_analyze_actions(
    documents,
    actions=[
        RecognizeEntitiesAction(),
        ExtractKeyPhrasesAction(),
        AnalyzeSentimentAction()
    ]
)

results = poller.result()
for doc_results in results:
    for result in doc_results:
        if result.kind == "EntityRecognition":
            print(f"Entities: {[e.text for e in result.entities]}")
        elif result.kind == "KeyPhraseExtraction":
            print(f"Key phrases: {result.key_phrases}")
        elif result.kind == "SentimentAnalysis":
            print(f"Sentiment: {result.sentiment}")

Async Client

from azure.ai.textanalytics.aio import TextAnalyticsClient
from azure.identity.aio import DefaultAzureCredential

async def analyze():
    async with TextAnalyticsClient(
        endpoint=endpoint,
        credential=DefaultAzureCredential()
    ) as client:
        result = await client.analyze_sentiment(documents)
        # Process results...

Client Types

Client Purpose
TextAnalyticsClient All text analytics operations
TextAnalyticsClient (aio) Async version

Available Operations

Method Description
analyze_sentiment Sentiment analysis with opinion mining
recognize_entities Named entity recognition
recognize_pii_entities PII detection and redaction
recognize_linked_entities Entity linking to Wikipedia
extract_key_phrases Key phrase extraction
detect_language Language detection
begin_analyze_healthcare_entities Healthcare NLP (long-running)
begin_analyze_actions Multiple analyses in batch

Best Practices

  1. Use batch operations for multiple documents (up to 10 per request)
  2. Enable opinion mining for detailed aspect-based sentiment
  3. Use async client for high-throughput scenarios
  4. Handle document errors — results list may contain errors for some docs
  5. Specify language when known to improve accuracy
  6. Use context manager or close client explicitly