azure-ai-anomalydetector-java

📁 microsoft/skills 📅 9 days ago
0
总安装量
2
周安装量
#55873
全站排名
安装命令
npx skills add https://github.com/microsoft/skills --skill azure-ai-anomalydetector-java

Agent 安装分布

opencode 2
gemini-cli 2
claude-code 2
codex 2
kimi-cli 1

Skill 文档

Azure AI Anomaly Detector SDK for Java

Build anomaly detection applications using the Azure AI Anomaly Detector SDK for Java.

Installation

<dependency>
  <groupId>com.azure</groupId>
  <artifactId>azure-ai-anomalydetector</artifactId>
  <version>3.0.0-beta.6</version>
</dependency>

Client Creation

Sync and Async Clients

import com.azure.ai.anomalydetector.AnomalyDetectorClientBuilder;
import com.azure.ai.anomalydetector.MultivariateClient;
import com.azure.ai.anomalydetector.UnivariateClient;
import com.azure.core.credential.AzureKeyCredential;

String endpoint = System.getenv("AZURE_ANOMALY_DETECTOR_ENDPOINT");
String key = System.getenv("AZURE_ANOMALY_DETECTOR_API_KEY");

// Multivariate client for multiple correlated signals
MultivariateClient multivariateClient = new AnomalyDetectorClientBuilder()
    .credential(new AzureKeyCredential(key))
    .endpoint(endpoint)
    .buildMultivariateClient();

// Univariate client for single variable analysis
UnivariateClient univariateClient = new AnomalyDetectorClientBuilder()
    .credential(new AzureKeyCredential(key))
    .endpoint(endpoint)
    .buildUnivariateClient();

With DefaultAzureCredential

import com.azure.identity.DefaultAzureCredentialBuilder;

MultivariateClient client = new AnomalyDetectorClientBuilder()
    .credential(new DefaultAzureCredentialBuilder().build())
    .endpoint(endpoint)
    .buildMultivariateClient();

Key Concepts

Univariate Anomaly Detection

  • Batch Detection: Analyze entire time series at once
  • Streaming Detection: Real-time detection on latest data point
  • Change Point Detection: Detect trend changes in time series

Multivariate Anomaly Detection

  • Detect anomalies across 300+ correlated signals
  • Uses Graph Attention Network for inter-correlations
  • Three-step process: Train → Inference → Results

Core Patterns

Univariate Batch Detection

import com.azure.ai.anomalydetector.models.*;
import java.time.OffsetDateTime;
import java.util.List;

List<TimeSeriesPoint> series = List.of(
    new TimeSeriesPoint(OffsetDateTime.parse("2023-01-01T00:00:00Z"), 1.0),
    new TimeSeriesPoint(OffsetDateTime.parse("2023-01-02T00:00:00Z"), 2.5),
    // ... more data points (minimum 12 points required)
);

UnivariateDetectionOptions options = new UnivariateDetectionOptions(series)
    .setGranularity(TimeGranularity.DAILY)
    .setSensitivity(95);

UnivariateEntireDetectionResult result = univariateClient.detectUnivariateEntireSeries(options);

// Check for anomalies
for (int i = 0; i < result.getIsAnomaly().size(); i++) {
    if (result.getIsAnomaly().get(i)) {
        System.out.printf("Anomaly detected at index %d with value %.2f%n",
            i, series.get(i).getValue());
    }
}

Univariate Last Point Detection (Streaming)

UnivariateLastDetectionResult lastResult = univariateClient.detectUnivariateLastPoint(options);

if (lastResult.isAnomaly()) {
    System.out.println("Latest point is an anomaly!");
    System.out.printf("Expected: %.2f, Upper: %.2f, Lower: %.2f%n",
        lastResult.getExpectedValue(),
        lastResult.getUpperMargin(),
        lastResult.getLowerMargin());
}

Change Point Detection

UnivariateChangePointDetectionOptions changeOptions = 
    new UnivariateChangePointDetectionOptions(series, TimeGranularity.DAILY);

UnivariateChangePointDetectionResult changeResult = 
    univariateClient.detectUnivariateChangePoint(changeOptions);

for (int i = 0; i < changeResult.getIsChangePoint().size(); i++) {
    if (changeResult.getIsChangePoint().get(i)) {
        System.out.printf("Change point at index %d with confidence %.2f%n",
            i, changeResult.getConfidenceScores().get(i));
    }
}

Multivariate Model Training

import com.azure.ai.anomalydetector.models.*;
import com.azure.core.util.polling.SyncPoller;

// Prepare training request with blob storage data
ModelInfo modelInfo = new ModelInfo()
    .setDataSource("https://storage.blob.core.windows.net/container/data.zip?sasToken")
    .setStartTime(OffsetDateTime.parse("2023-01-01T00:00:00Z"))
    .setEndTime(OffsetDateTime.parse("2023-06-01T00:00:00Z"))
    .setSlidingWindow(200)
    .setDisplayName("MyMultivariateModel");

// Train model (long-running operation)
AnomalyDetectionModel trainedModel = multivariateClient.trainMultivariateModel(modelInfo);

String modelId = trainedModel.getModelId();
System.out.println("Model ID: " + modelId);

// Check training status
AnomalyDetectionModel model = multivariateClient.getMultivariateModel(modelId);
System.out.println("Status: " + model.getModelInfo().getStatus());

Multivariate Batch Inference

MultivariateBatchDetectionOptions detectionOptions = new MultivariateBatchDetectionOptions()
    .setDataSource("https://storage.blob.core.windows.net/container/inference-data.zip?sasToken")
    .setStartTime(OffsetDateTime.parse("2023-07-01T00:00:00Z"))
    .setEndTime(OffsetDateTime.parse("2023-07-31T00:00:00Z"))
    .setTopContributorCount(10);

MultivariateDetectionResult detectionResult = 
    multivariateClient.detectMultivariateBatchAnomaly(modelId, detectionOptions);

String resultId = detectionResult.getResultId();

// Poll for results
MultivariateDetectionResult result = multivariateClient.getBatchDetectionResult(resultId);
for (AnomalyState state : result.getResults()) {
    if (state.getValue().isAnomaly()) {
        System.out.printf("Anomaly at %s, severity: %.2f%n",
            state.getTimestamp(),
            state.getValue().getSeverity());
    }
}

Multivariate Last Point Detection

MultivariateLastDetectionOptions lastOptions = new MultivariateLastDetectionOptions()
    .setVariables(List.of(
        new VariableValues("variable1", List.of("timestamp1"), List.of(1.0f)),
        new VariableValues("variable2", List.of("timestamp1"), List.of(2.5f))
    ))
    .setTopContributorCount(5);

MultivariateLastDetectionResult lastResult = 
    multivariateClient.detectMultivariateLastAnomaly(modelId, lastOptions);

if (lastResult.getValue().isAnomaly()) {
    System.out.println("Anomaly detected!");
    // Check contributing variables
    for (AnomalyContributor contributor : lastResult.getValue().getInterpretation()) {
        System.out.printf("Variable: %s, Contribution: %.2f%n",
            contributor.getVariable(),
            contributor.getContributionScore());
    }
}

Model Management

// List all models
PagedIterable<AnomalyDetectionModel> models = multivariateClient.listMultivariateModels();
for (AnomalyDetectionModel m : models) {
    System.out.printf("Model: %s, Status: %s%n",
        m.getModelId(),
        m.getModelInfo().getStatus());
}

// Delete a model
multivariateClient.deleteMultivariateModel(modelId);

Error Handling

import com.azure.core.exception.HttpResponseException;

try {
    univariateClient.detectUnivariateEntireSeries(options);
} catch (HttpResponseException e) {
    System.out.println("Status code: " + e.getResponse().getStatusCode());
    System.out.println("Error: " + e.getMessage());
}

Environment Variables

AZURE_ANOMALY_DETECTOR_ENDPOINT=https://<resource>.cognitiveservices.azure.com/
AZURE_ANOMALY_DETECTOR_API_KEY=<your-api-key>

Best Practices

  1. Minimum Data Points: Univariate requires at least 12 points; more data improves accuracy
  2. Granularity Alignment: Match TimeGranularity to your actual data frequency
  3. Sensitivity Tuning: Higher values (0-99) detect more anomalies
  4. Multivariate Training: Use 200-1000 sliding window based on pattern complexity
  5. Error Handling: Always handle HttpResponseException for API errors

Trigger Phrases

  • “anomaly detection Java”
  • “detect anomalies time series”
  • “multivariate anomaly Java”
  • “univariate anomaly detection”
  • “streaming anomaly detection”
  • “change point detection”
  • “Azure AI Anomaly Detector”