azure-ai-agents-persistent-dotnet
0
总安装量
4
周安装量
#55936
全站排名
安装命令
npx skills add https://github.com/microsoft/skills --skill azure-ai-agents-persistent-dotnet
Agent 安装分布
opencode
3
gemini-cli
3
claude-code
3
codex
3
kimi-cli
2
Skill 文档
Azure.AI.Agents.Persistent (.NET)
Low-level SDK for creating and managing persistent AI agents with threads, messages, runs, and tools.
Installation
dotnet add package Azure.AI.Agents.Persistent --prerelease
dotnet add package Azure.Identity
Current Versions: Stable v1.1.0, Preview v1.2.0-beta.8
Environment Variables
PROJECT_ENDPOINT=https://<resource>.services.ai.azure.com/api/projects/<project>
MODEL_DEPLOYMENT_NAME=gpt-4o-mini
AZURE_BING_CONNECTION_ID=<bing-connection-resource-id>
AZURE_AI_SEARCH_CONNECTION_ID=<search-connection-resource-id>
Authentication
using Azure.AI.Agents.Persistent;
using Azure.Identity;
var projectEndpoint = Environment.GetEnvironmentVariable("PROJECT_ENDPOINT");
PersistentAgentsClient client = new(projectEndpoint, new DefaultAzureCredential());
Client Hierarchy
PersistentAgentsClient
âââ Administration â Agent CRUD operations
âââ Threads â Thread management
âââ Messages â Message operations
âââ Runs â Run execution and streaming
âââ Files â File upload/download
âââ VectorStores â Vector store management
Core Workflow
1. Create Agent
var modelDeploymentName = Environment.GetEnvironmentVariable("MODEL_DEPLOYMENT_NAME");
PersistentAgent agent = await client.Administration.CreateAgentAsync(
model: modelDeploymentName,
name: "Math Tutor",
instructions: "You are a personal math tutor. Write and run code to answer math questions.",
tools: [new CodeInterpreterToolDefinition()]
);
2. Create Thread and Message
// Create thread
PersistentAgentThread thread = await client.Threads.CreateThreadAsync();
// Create message
await client.Messages.CreateMessageAsync(
thread.Id,
MessageRole.User,
"I need to solve the equation `3x + 11 = 14`. Can you help me?"
);
3. Run Agent (Polling)
// Create run
ThreadRun run = await client.Runs.CreateRunAsync(
thread.Id,
agent.Id,
additionalInstructions: "Please address the user as Jane Doe."
);
// Poll for completion
do
{
await Task.Delay(TimeSpan.FromMilliseconds(500));
run = await client.Runs.GetRunAsync(thread.Id, run.Id);
}
while (run.Status == RunStatus.Queued || run.Status == RunStatus.InProgress);
// Retrieve messages
await foreach (PersistentThreadMessage message in client.Messages.GetMessagesAsync(
threadId: thread.Id,
order: ListSortOrder.Ascending))
{
Console.Write($"{message.Role}: ");
foreach (MessageContent content in message.ContentItems)
{
if (content is MessageTextContent textContent)
Console.WriteLine(textContent.Text);
}
}
4. Streaming Response
AsyncCollectionResult<StreamingUpdate> stream = client.Runs.CreateRunStreamingAsync(
thread.Id,
agent.Id
);
await foreach (StreamingUpdate update in stream)
{
if (update.UpdateKind == StreamingUpdateReason.RunCreated)
{
Console.WriteLine("--- Run started! ---");
}
else if (update is MessageContentUpdate contentUpdate)
{
Console.Write(contentUpdate.Text);
}
else if (update.UpdateKind == StreamingUpdateReason.RunCompleted)
{
Console.WriteLine("\n--- Run completed! ---");
}
}
5. Function Calling
// Define function tool
FunctionToolDefinition weatherTool = new(
name: "getCurrentWeather",
description: "Gets the current weather at a location.",
parameters: BinaryData.FromObjectAsJson(new
{
Type = "object",
Properties = new
{
Location = new { Type = "string", Description = "City and state, e.g. San Francisco, CA" },
Unit = new { Type = "string", Enum = new[] { "c", "f" } }
},
Required = new[] { "location" }
}, new JsonSerializerOptions { PropertyNamingPolicy = JsonNamingPolicy.CamelCase })
);
// Create agent with function
PersistentAgent agent = await client.Administration.CreateAgentAsync(
model: modelDeploymentName,
name: "Weather Bot",
instructions: "You are a weather bot.",
tools: [weatherTool]
);
// Handle function calls during polling
do
{
await Task.Delay(500);
run = await client.Runs.GetRunAsync(thread.Id, run.Id);
if (run.Status == RunStatus.RequiresAction
&& run.RequiredAction is SubmitToolOutputsAction submitAction)
{
List<ToolOutput> outputs = [];
foreach (RequiredToolCall toolCall in submitAction.ToolCalls)
{
if (toolCall is RequiredFunctionToolCall funcCall)
{
// Execute function and get result
string result = ExecuteFunction(funcCall.Name, funcCall.Arguments);
outputs.Add(new ToolOutput(toolCall, result));
}
}
run = await client.Runs.SubmitToolOutputsToRunAsync(run, outputs, toolApprovals: null);
}
}
while (run.Status == RunStatus.Queued || run.Status == RunStatus.InProgress);
6. File Search with Vector Store
// Upload file
PersistentAgentFileInfo file = await client.Files.UploadFileAsync(
filePath: "document.txt",
purpose: PersistentAgentFilePurpose.Agents
);
// Create vector store
PersistentAgentsVectorStore vectorStore = await client.VectorStores.CreateVectorStoreAsync(
fileIds: [file.Id],
name: "my_vector_store"
);
// Create file search resource
FileSearchToolResource fileSearchResource = new();
fileSearchResource.VectorStoreIds.Add(vectorStore.Id);
// Create agent with file search
PersistentAgent agent = await client.Administration.CreateAgentAsync(
model: modelDeploymentName,
name: "Document Assistant",
instructions: "You help users find information in documents.",
tools: [new FileSearchToolDefinition()],
toolResources: new ToolResources { FileSearch = fileSearchResource }
);
7. Bing Grounding
var bingConnectionId = Environment.GetEnvironmentVariable("AZURE_BING_CONNECTION_ID");
BingGroundingToolDefinition bingTool = new(
new BingGroundingSearchToolParameters(
[new BingGroundingSearchConfiguration(bingConnectionId)]
)
);
PersistentAgent agent = await client.Administration.CreateAgentAsync(
model: modelDeploymentName,
name: "Search Agent",
instructions: "Use Bing to answer questions about current events.",
tools: [bingTool]
);
8. Azure AI Search
AzureAISearchToolResource searchResource = new(
connectionId: searchConnectionId,
indexName: "my_index",
topK: 5,
filter: "category eq 'documentation'",
queryType: AzureAISearchQueryType.Simple
);
PersistentAgent agent = await client.Administration.CreateAgentAsync(
model: modelDeploymentName,
name: "Search Agent",
instructions: "Search the documentation index to answer questions.",
tools: [new AzureAISearchToolDefinition()],
toolResources: new ToolResources { AzureAISearch = searchResource }
);
9. Cleanup
await client.Threads.DeleteThreadAsync(thread.Id);
await client.Administration.DeleteAgentAsync(agent.Id);
await client.VectorStores.DeleteVectorStoreAsync(vectorStore.Id);
await client.Files.DeleteFileAsync(file.Id);
Available Tools
| Tool | Class | Purpose |
|---|---|---|
| Code Interpreter | CodeInterpreterToolDefinition |
Execute Python code, generate visualizations |
| File Search | FileSearchToolDefinition |
Search uploaded files via vector stores |
| Function Calling | FunctionToolDefinition |
Call custom functions |
| Bing Grounding | BingGroundingToolDefinition |
Web search via Bing |
| Azure AI Search | AzureAISearchToolDefinition |
Search Azure AI Search indexes |
| OpenAPI | OpenApiToolDefinition |
Call external APIs via OpenAPI spec |
| Azure Functions | AzureFunctionToolDefinition |
Invoke Azure Functions |
| MCP | MCPToolDefinition |
Model Context Protocol tools |
| SharePoint | SharepointToolDefinition |
Access SharePoint content |
| Microsoft Fabric | MicrosoftFabricToolDefinition |
Access Fabric data |
Streaming Update Types
| Update Type | Description |
|---|---|
StreamingUpdateReason.RunCreated |
Run started |
StreamingUpdateReason.RunInProgress |
Run processing |
StreamingUpdateReason.RunCompleted |
Run finished |
StreamingUpdateReason.RunFailed |
Run errored |
MessageContentUpdate |
Text content chunk |
RunStepUpdate |
Step status change |
Key Types Reference
| Type | Purpose |
|---|---|
PersistentAgentsClient |
Main entry point |
PersistentAgent |
Agent with model, instructions, tools |
PersistentAgentThread |
Conversation thread |
PersistentThreadMessage |
Message in thread |
ThreadRun |
Execution of agent against thread |
RunStatus |
Queued, InProgress, RequiresAction, Completed, Failed |
ToolResources |
Combined tool resources |
ToolOutput |
Function call response |
Best Practices
- Always dispose clients â Use
usingstatements or explicit disposal - Poll with appropriate delays â 500ms recommended between status checks
- Clean up resources â Delete threads and agents when done
- Handle all run statuses â Check for
RequiresAction,Failed,Cancelled - Use streaming for real-time UX â Better user experience than polling
- Store IDs not objects â Reference agents/threads by ID
- Use async methods â All operations should be async
Error Handling
using Azure;
try
{
var agent = await client.Administration.CreateAgentAsync(...);
}
catch (RequestFailedException ex) when (ex.Status == 404)
{
Console.WriteLine("Resource not found");
}
catch (RequestFailedException ex)
{
Console.WriteLine($"Error: {ex.Status} - {ex.ErrorCode}: {ex.Message}");
}
Related SDKs
| SDK | Purpose | Install |
|---|---|---|
Azure.AI.Agents.Persistent |
Low-level agents (this SDK) | dotnet add package Azure.AI.Agents.Persistent |
Azure.AI.Projects |
High-level project client | dotnet add package Azure.AI.Projects |