azure-ai-projects-dotnet
0
总安装量
3
周安装量
#55990
全站排名
安装命令
npx skills add https://github.com/microsoft/agent-skills --skill azure-ai-projects-dotnet
Agent 安装分布
opencode
2
claude-code
2
github-copilot
2
mcpjam
1
codebuddy
1
Skill 文档
Azure.AI.Projects (.NET)
High-level SDK for Azure AI Foundry project operations including agents, connections, datasets, deployments, evaluations, and indexes.
Installation
dotnet add package Azure.AI.Projects
dotnet add package Azure.Identity
# Optional: For versioned agents with OpenAI extensions
dotnet add package Azure.AI.Projects.OpenAI --prerelease
# Optional: For low-level agent operations
dotnet add package Azure.AI.Agents.Persistent --prerelease
Current Versions: GA v1.1.0, Preview v1.2.0-beta.5
Environment Variables
PROJECT_ENDPOINT=https://<resource>.services.ai.azure.com/api/projects/<project>
MODEL_DEPLOYMENT_NAME=gpt-4o-mini
CONNECTION_NAME=<your-connection-name>
AI_SEARCH_CONNECTION_NAME=<ai-search-connection>
Authentication
using Azure.Identity;
using Azure.AI.Projects;
var endpoint = Environment.GetEnvironmentVariable("PROJECT_ENDPOINT");
AIProjectClient projectClient = new AIProjectClient(
new Uri(endpoint),
new DefaultAzureCredential());
Client Hierarchy
AIProjectClient
âââ Agents â AIProjectAgentsOperations (versioned agents)
âââ Connections â ConnectionsClient
âââ Datasets â DatasetsClient
âââ Deployments â DeploymentsClient
âââ Evaluations â EvaluationsClient
âââ Evaluators â EvaluatorsClient
âââ Indexes â IndexesClient
âââ Telemetry â AIProjectTelemetry
âââ OpenAI â ProjectOpenAIClient (preview)
âââ GetPersistentAgentsClient() â PersistentAgentsClient
Core Workflows
1. Get Persistent Agents Client
// Get low-level agents client from project client
PersistentAgentsClient agentsClient = projectClient.GetPersistentAgentsClient();
// Create agent
PersistentAgent agent = await agentsClient.Administration.CreateAgentAsync(
model: "gpt-4o-mini",
name: "Math Tutor",
instructions: "You are a personal math tutor.");
// Create thread and run
PersistentAgentThread thread = await agentsClient.Threads.CreateThreadAsync();
await agentsClient.Messages.CreateMessageAsync(thread.Id, MessageRole.User, "Solve 3x + 11 = 14");
ThreadRun run = await agentsClient.Runs.CreateRunAsync(thread.Id, agent.Id);
// Poll for completion
do
{
await Task.Delay(500);
run = await agentsClient.Runs.GetRunAsync(thread.Id, run.Id);
}
while (run.Status == RunStatus.Queued || run.Status == RunStatus.InProgress);
// Get messages
await foreach (var msg in agentsClient.Messages.GetMessagesAsync(thread.Id))
{
foreach (var content in msg.ContentItems)
{
if (content is MessageTextContent textContent)
Console.WriteLine(textContent.Text);
}
}
// Cleanup
await agentsClient.Threads.DeleteThreadAsync(thread.Id);
await agentsClient.Administration.DeleteAgentAsync(agent.Id);
2. Versioned Agents with Tools (Preview)
using Azure.AI.Projects.OpenAI;
// Create agent with web search tool
PromptAgentDefinition agentDefinition = new(model: "gpt-4o-mini")
{
Instructions = "You are a helpful assistant that can search the web",
Tools = {
ResponseTool.CreateWebSearchTool(
userLocation: WebSearchToolLocation.CreateApproximateLocation(
country: "US",
city: "Seattle",
region: "Washington"
)
),
}
};
AgentVersion agentVersion = await projectClient.Agents.CreateAgentVersionAsync(
agentName: "myAgent",
options: new(agentDefinition));
// Get response client
ProjectResponsesClient responseClient = projectClient.OpenAI.GetProjectResponsesClientForAgent(agentVersion.Name);
// Create response
ResponseResult response = responseClient.CreateResponse("What's the weather in Seattle?");
Console.WriteLine(response.GetOutputText());
// Cleanup
projectClient.Agents.DeleteAgentVersion(agentName: agentVersion.Name, agentVersion: agentVersion.Version);
3. Connections
// List all connections
foreach (AIProjectConnection connection in projectClient.Connections.GetConnections())
{
Console.WriteLine($"{connection.Name}: {connection.ConnectionType}");
}
// Get specific connection
AIProjectConnection conn = projectClient.Connections.GetConnection(
connectionName,
includeCredentials: true);
// Get default connection
AIProjectConnection defaultConn = projectClient.Connections.GetDefaultConnection(
includeCredentials: false);
4. Deployments
// List all deployments
foreach (AIProjectDeployment deployment in projectClient.Deployments.GetDeployments())
{
Console.WriteLine($"{deployment.Name}: {deployment.ModelName}");
}
// Filter by publisher
foreach (var deployment in projectClient.Deployments.GetDeployments(modelPublisher: "Microsoft"))
{
Console.WriteLine(deployment.Name);
}
// Get specific deployment
ModelDeployment details = (ModelDeployment)projectClient.Deployments.GetDeployment("gpt-4o-mini");
5. Datasets
// Upload single file
FileDataset fileDataset = projectClient.Datasets.UploadFile(
name: "my-dataset",
version: "1.0",
filePath: "data/training.txt",
connectionName: connectionName);
// Upload folder
FolderDataset folderDataset = projectClient.Datasets.UploadFolder(
name: "my-dataset",
version: "2.0",
folderPath: "data/training",
connectionName: connectionName,
filePattern: new Regex(".*\\.txt"));
// Get dataset
AIProjectDataset dataset = projectClient.Datasets.GetDataset("my-dataset", "1.0");
// Delete dataset
projectClient.Datasets.Delete("my-dataset", "1.0");
6. Indexes
// Create Azure AI Search index
AzureAISearchIndex searchIndex = new(aiSearchConnectionName, aiSearchIndexName)
{
Description = "Sample Index"
};
searchIndex = (AzureAISearchIndex)projectClient.Indexes.CreateOrUpdate(
name: "my-index",
version: "1.0",
index: searchIndex);
// List indexes
foreach (AIProjectIndex index in projectClient.Indexes.GetIndexes())
{
Console.WriteLine(index.Name);
}
// Delete index
projectClient.Indexes.Delete(name: "my-index", version: "1.0");
7. Evaluations
// Create evaluation configuration
var evaluatorConfig = new EvaluatorConfiguration(id: EvaluatorIDs.Relevance);
evaluatorConfig.InitParams.Add("deployment_name", BinaryData.FromObjectAsJson("gpt-4o"));
// Create evaluation
Evaluation evaluation = new Evaluation(
data: new InputDataset("<dataset_id>"),
evaluators: new Dictionary<string, EvaluatorConfiguration>
{
{ "relevance", evaluatorConfig }
}
)
{
DisplayName = "Sample Evaluation"
};
// Run evaluation
Evaluation result = projectClient.Evaluations.Create(evaluation: evaluation);
// Get evaluation
Evaluation getResult = projectClient.Evaluations.Get(result.Name);
// List evaluations
foreach (var eval in projectClient.Evaluations.GetAll())
{
Console.WriteLine($"{eval.DisplayName}: {eval.Status}");
}
8. Get Azure OpenAI Chat Client
using Azure.AI.OpenAI;
using OpenAI.Chat;
ClientConnection connection = projectClient.GetConnection(typeof(AzureOpenAIClient).FullName!);
if (!connection.TryGetLocatorAsUri(out Uri uri) || uri is null)
throw new InvalidOperationException("Invalid URI.");
uri = new Uri($"https://{uri.Host}");
AzureOpenAIClient azureOpenAIClient = new AzureOpenAIClient(uri, new DefaultAzureCredential());
ChatClient chatClient = azureOpenAIClient.GetChatClient("gpt-4o-mini");
ChatCompletion result = chatClient.CompleteChat("List all rainbow colors");
Console.WriteLine(result.Content[0].Text);
Available Agent Tools
| Tool | Class | Purpose |
|---|---|---|
| Code Interpreter | CodeInterpreterToolDefinition |
Execute Python code |
| File Search | FileSearchToolDefinition |
Search uploaded files |
| Function Calling | FunctionToolDefinition |
Call custom functions |
| Bing Grounding | BingGroundingToolDefinition |
Web search via Bing |
| Azure AI Search | AzureAISearchToolDefinition |
Search Azure AI indexes |
| OpenAPI | OpenApiToolDefinition |
Call external APIs |
| Azure Functions | AzureFunctionToolDefinition |
Invoke Azure Functions |
| MCP | MCPToolDefinition |
Model Context Protocol tools |
Key Types Reference
| Type | Purpose |
|---|---|
AIProjectClient |
Main entry point |
PersistentAgentsClient |
Low-level agent operations |
PromptAgentDefinition |
Versioned agent definition |
AgentVersion |
Versioned agent instance |
AIProjectConnection |
Connection to Azure resource |
AIProjectDeployment |
Model deployment info |
AIProjectDataset |
Dataset metadata |
AIProjectIndex |
Search index metadata |
Evaluation |
Evaluation configuration and results |
Best Practices
- Use
DefaultAzureCredentialfor production authentication - Use async methods (
*Async) for all I/O operations - Poll with appropriate delays (500ms recommended) when waiting for runs
- Clean up resources â delete threads, agents, and files when done
- Use versioned agents (via
Azure.AI.Projects.OpenAI) for production scenarios - Store connection IDs rather than names for tool configurations
- Use
includeCredentials: trueonly when credentials are needed - Handle pagination â use
AsyncPageable<T>for listing operations
Error Handling
using Azure;
try
{
var result = await projectClient.Evaluations.CreateAsync(evaluation);
}
catch (RequestFailedException ex)
{
Console.WriteLine($"Error: {ex.Status} - {ex.ErrorCode}: {ex.Message}");
}
Related SDKs
| SDK | Purpose | Install |
|---|---|---|
Azure.AI.Projects |
High-level project client (this SDK) | dotnet add package Azure.AI.Projects |
Azure.AI.Agents.Persistent |
Low-level agent operations | dotnet add package Azure.AI.Agents.Persistent |
Azure.AI.Projects.OpenAI |
Versioned agents with OpenAI | dotnet add package Azure.AI.Projects.OpenAI |