azure-ai-openai-dotnet

📁 microsoft/agent-skills 📅 Jan 29, 2026
0
总安装量
3
周安装量
#55905
全站排名
安装命令
npx skills add https://github.com/microsoft/agent-skills --skill azure-ai-openai-dotnet

Agent 安装分布

opencode 2
claude-code 2
github-copilot 2
mcpjam 1
qwen-code 1

Skill 文档

Azure.AI.OpenAI (.NET)

Client library for Azure OpenAI Service providing access to OpenAI models including GPT-4, GPT-4o, embeddings, DALL-E, and Whisper.

Installation

dotnet add package Azure.AI.OpenAI

# For OpenAI (non-Azure) compatibility
dotnet add package OpenAI

Current Version: 2.1.0 (stable)

Environment Variables

AZURE_OPENAI_ENDPOINT=https://<resource-name>.openai.azure.com
AZURE_OPENAI_API_KEY=<api-key>                    # For key-based auth
AZURE_OPENAI_DEPLOYMENT_NAME=gpt-4o-mini          # Your deployment name

Client Hierarchy

AzureOpenAIClient (top-level)
├── GetChatClient(deploymentName)      → ChatClient
├── GetEmbeddingClient(deploymentName) → EmbeddingClient
├── GetImageClient(deploymentName)     → ImageClient
├── GetAudioClient(deploymentName)     → AudioClient
└── GetAssistantClient()               → AssistantClient

Authentication

API Key Authentication

using Azure;
using Azure.AI.OpenAI;

AzureOpenAIClient client = new(
    new Uri(Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT")!),
    new AzureKeyCredential(Environment.GetEnvironmentVariable("AZURE_OPENAI_API_KEY")!));

Microsoft Entra ID (Recommended for Production)

using Azure.Identity;
using Azure.AI.OpenAI;

AzureOpenAIClient client = new(
    new Uri(Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT")!),
    new DefaultAzureCredential());

Using OpenAI SDK Directly with Azure

using Azure.Identity;
using OpenAI;
using OpenAI.Chat;
using System.ClientModel.Primitives;

#pragma warning disable OPENAI001

BearerTokenPolicy tokenPolicy = new(
    new DefaultAzureCredential(),
    "https://cognitiveservices.azure.com/.default");

ChatClient client = new(
    model: "gpt-4o-mini",
    authenticationPolicy: tokenPolicy,
    options: new OpenAIClientOptions()
    {
        Endpoint = new Uri("https://YOUR-RESOURCE.openai.azure.com/openai/v1")
    });

Chat Completions

Basic Chat

using Azure.AI.OpenAI;
using OpenAI.Chat;

AzureOpenAIClient azureClient = new(
    new Uri(endpoint),
    new DefaultAzureCredential());

ChatClient chatClient = azureClient.GetChatClient("gpt-4o-mini");

ChatCompletion completion = chatClient.CompleteChat(
[
    new SystemChatMessage("You are a helpful assistant."),
    new UserChatMessage("What is Azure OpenAI?")
]);

Console.WriteLine(completion.Content[0].Text);

Async Chat

ChatCompletion completion = await chatClient.CompleteChatAsync(
[
    new SystemChatMessage("You are a helpful assistant."),
    new UserChatMessage("Explain cloud computing in simple terms.")
]);

Console.WriteLine($"Response: {completion.Content[0].Text}");
Console.WriteLine($"Tokens used: {completion.Usage.TotalTokenCount}");

Streaming Chat

await foreach (StreamingChatCompletionUpdate update 
    in chatClient.CompleteChatStreamingAsync(messages))
{
    if (update.ContentUpdate.Count > 0)
    {
        Console.Write(update.ContentUpdate[0].Text);
    }
}

Chat with Options

ChatCompletionOptions options = new()
{
    MaxOutputTokenCount = 1000,
    Temperature = 0.7f,
    TopP = 0.95f,
    FrequencyPenalty = 0,
    PresencePenalty = 0
};

ChatCompletion completion = await chatClient.CompleteChatAsync(messages, options);

Multi-turn Conversation

List<ChatMessage> messages = new()
{
    new SystemChatMessage("You are a helpful assistant."),
    new UserChatMessage("Hi, can you help me?"),
    new AssistantChatMessage("Of course! What do you need help with?"),
    new UserChatMessage("What's the capital of France?")
};

ChatCompletion completion = await chatClient.CompleteChatAsync(messages);
messages.Add(new AssistantChatMessage(completion.Content[0].Text));

Structured Outputs (JSON Schema)

using System.Text.Json;

ChatCompletionOptions options = new()
{
    ResponseFormat = ChatResponseFormat.CreateJsonSchemaFormat(
        jsonSchemaFormatName: "math_reasoning",
        jsonSchema: BinaryData.FromBytes("""
            {
                "type": "object",
                "properties": {
                    "steps": {
                        "type": "array",
                        "items": {
                            "type": "object",
                            "properties": {
                                "explanation": { "type": "string" },
                                "output": { "type": "string" }
                            },
                            "required": ["explanation", "output"],
                            "additionalProperties": false
                        }
                    },
                    "final_answer": { "type": "string" }
                },
                "required": ["steps", "final_answer"],
                "additionalProperties": false
            }
            """u8.ToArray()),
        jsonSchemaIsStrict: true)
};

ChatCompletion completion = await chatClient.CompleteChatAsync(
    [new UserChatMessage("How can I solve 8x + 7 = -23?")],
    options);

using JsonDocument json = JsonDocument.Parse(completion.Content[0].Text);
Console.WriteLine($"Answer: {json.RootElement.GetProperty("final_answer")}");

Reasoning Models (o1, o4-mini)

ChatCompletionOptions options = new()
{
    ReasoningEffortLevel = ChatReasoningEffortLevel.Low,
    MaxOutputTokenCount = 100000
};

ChatCompletion completion = await chatClient.CompleteChatAsync(
[
    new DeveloperChatMessage("You are a helpful assistant"),
    new UserChatMessage("Explain the theory of relativity")
], options);

Azure AI Search Integration (RAG)

using Azure.AI.OpenAI.Chat;

#pragma warning disable AOAI001

ChatCompletionOptions options = new();
options.AddDataSource(new AzureSearchChatDataSource()
{
    Endpoint = new Uri(searchEndpoint),
    IndexName = searchIndex,
    Authentication = DataSourceAuthentication.FromApiKey(searchKey)
});

ChatCompletion completion = await chatClient.CompleteChatAsync(
    [new UserChatMessage("What health plans are available?")],
    options);

ChatMessageContext context = completion.GetMessageContext();
if (context?.Intent is not null)
{
    Console.WriteLine($"Intent: {context.Intent}");
}
foreach (ChatCitation citation in context?.Citations ?? [])
{
    Console.WriteLine($"Citation: {citation.Content}");
}

Embeddings

using OpenAI.Embeddings;

EmbeddingClient embeddingClient = azureClient.GetEmbeddingClient("text-embedding-ada-002");

OpenAIEmbedding embedding = await embeddingClient.GenerateEmbeddingAsync("Hello, world!");
ReadOnlyMemory<float> vector = embedding.ToFloats();

Console.WriteLine($"Embedding dimensions: {vector.Length}");

Batch Embeddings

List<string> inputs = new()
{
    "First document text",
    "Second document text",
    "Third document text"
};

OpenAIEmbeddingCollection embeddings = await embeddingClient.GenerateEmbeddingsAsync(inputs);

foreach (OpenAIEmbedding emb in embeddings)
{
    Console.WriteLine($"Index {emb.Index}: {emb.ToFloats().Length} dimensions");
}

Image Generation (DALL-E)

using OpenAI.Images;

ImageClient imageClient = azureClient.GetImageClient("dall-e-3");

GeneratedImage image = await imageClient.GenerateImageAsync(
    "A futuristic city skyline at sunset",
    new ImageGenerationOptions
    {
        Size = GeneratedImageSize.W1024xH1024,
        Quality = GeneratedImageQuality.High,
        Style = GeneratedImageStyle.Vivid
    });

Console.WriteLine($"Image URL: {image.ImageUri}");

Audio (Whisper)

Transcription

using OpenAI.Audio;

AudioClient audioClient = azureClient.GetAudioClient("whisper");

AudioTranscription transcription = await audioClient.TranscribeAudioAsync(
    "audio.mp3",
    new AudioTranscriptionOptions
    {
        ResponseFormat = AudioTranscriptionFormat.Verbose,
        Language = "en"
    });

Console.WriteLine(transcription.Text);

Text-to-Speech

BinaryData speech = await audioClient.GenerateSpeechAsync(
    "Hello, welcome to Azure OpenAI!",
    GeneratedSpeechVoice.Alloy,
    new SpeechGenerationOptions
    {
        SpeedRatio = 1.0f,
        ResponseFormat = GeneratedSpeechFormat.Mp3
    });

await File.WriteAllBytesAsync("output.mp3", speech.ToArray());

Function Calling (Tools)

ChatTool getCurrentWeatherTool = ChatTool.CreateFunctionTool(
    functionName: "get_current_weather",
    functionDescription: "Get the current weather in a given location",
    functionParameters: BinaryData.FromString("""
        {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The city and state, e.g. San Francisco, CA"
                },
                "unit": {
                    "type": "string",
                    "enum": ["celsius", "fahrenheit"]
                }
            },
            "required": ["location"]
        }
        """));

ChatCompletionOptions options = new()
{
    Tools = { getCurrentWeatherTool }
};

ChatCompletion completion = await chatClient.CompleteChatAsync(
    [new UserChatMessage("What's the weather in Seattle?")],
    options);

if (completion.FinishReason == ChatFinishReason.ToolCalls)
{
    foreach (ChatToolCall toolCall in completion.ToolCalls)
    {
        Console.WriteLine($"Function: {toolCall.FunctionName}");
        Console.WriteLine($"Arguments: {toolCall.FunctionArguments}");
    }
}

Key Types Reference

Type Purpose
AzureOpenAIClient Top-level client for Azure OpenAI
ChatClient Chat completions
EmbeddingClient Text embeddings
ImageClient Image generation (DALL-E)
AudioClient Audio transcription/TTS
ChatCompletion Chat response
ChatCompletionOptions Request configuration
StreamingChatCompletionUpdate Streaming response chunk
ChatMessage Base message type
SystemChatMessage System prompt
UserChatMessage User input
AssistantChatMessage Assistant response
DeveloperChatMessage Developer message (reasoning models)
ChatTool Function/tool definition
ChatToolCall Tool invocation request

Best Practices

  1. Use Entra ID in production — Avoid API keys; use DefaultAzureCredential
  2. Reuse client instances — Create once, share across requests
  3. Handle rate limits — Implement exponential backoff for 429 errors
  4. Stream for long responses — Use CompleteChatStreamingAsync for better UX
  5. Set appropriate timeouts — Long completions may need extended timeouts
  6. Use structured outputs — JSON schema ensures consistent response format
  7. Monitor token usage — Track completion.Usage for cost management
  8. Validate tool calls — Always validate function arguments before execution

Error Handling

using Azure;

try
{
    ChatCompletion completion = await chatClient.CompleteChatAsync(messages);
}
catch (RequestFailedException ex) when (ex.Status == 429)
{
    Console.WriteLine("Rate limited. Retry after delay.");
    await Task.Delay(TimeSpan.FromSeconds(10));
}
catch (RequestFailedException ex) when (ex.Status == 400)
{
    Console.WriteLine($"Bad request: {ex.Message}");
}
catch (RequestFailedException ex)
{
    Console.WriteLine($"Azure OpenAI error: {ex.Status} - {ex.Message}");
}

Related SDKs

SDK Purpose Install
Azure.AI.OpenAI Azure OpenAI client (this SDK) dotnet add package Azure.AI.OpenAI
OpenAI OpenAI compatibility dotnet add package OpenAI
Azure.Identity Authentication dotnet add package Azure.Identity
Azure.Search.Documents AI Search for RAG dotnet add package Azure.Search.Documents

Reference Links

Resource URL
NuGet Package https://www.nuget.org/packages/Azure.AI.OpenAI
API Reference https://learn.microsoft.com/dotnet/api/azure.ai.openai
Migration Guide (1.0→2.0) https://learn.microsoft.com/azure/ai-services/openai/how-to/dotnet-migration
Quickstart https://learn.microsoft.com/azure/ai-services/openai/quickstart
GitHub Source https://github.com/Azure/azure-sdk-for-net/tree/main/sdk/openai/Azure.AI.OpenAI