agents-v2-py

📁 microsoft/agent-skills 📅 6 days ago
0
总安装量
0
周安装量
#55906
全站排名
安装命令
npx skills add https://github.com/microsoft/agent-skills --skill agents-v2-py

Skill 文档

Azure AI Hosted Agents (Python)

Build container-based hosted agents using ImageBasedHostedAgentDefinition from the Azure AI Projects SDK.

Installation

pip install azure-ai-projects>=2.0.0b3 azure-identity

Minimum SDK Version: 2.0.0b3 or later required for hosted agent support.

Environment Variables

AZURE_AI_PROJECT_ENDPOINT=https://<resource>.services.ai.azure.com/api/projects/<project>

Prerequisites

Before creating hosted agents:

  1. Container Image – Build and push to Azure Container Registry (ACR)
  2. ACR Pull Permissions – Grant your project’s managed identity AcrPull role on the ACR
  3. Capability Host – Account-level capability host with enablePublicHostingEnvironment=true
  4. SDK Version – Ensure azure-ai-projects>=2.0.0b3

Authentication

Always use DefaultAzureCredential:

from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient

credential = DefaultAzureCredential()
client = AIProjectClient(
    endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
    credential=credential
)

Core Workflow

1. Imports

import os
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
from azure.ai.projects.models import (
    ImageBasedHostedAgentDefinition,
    ProtocolVersionRecord,
    AgentProtocol,
)

2. Create Hosted Agent

client = AIProjectClient(
    endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
    credential=DefaultAzureCredential()
)

agent = client.agents.create_version(
    agent_name="my-hosted-agent",
    definition=ImageBasedHostedAgentDefinition(
        container_protocol_versions=[
            ProtocolVersionRecord(protocol=AgentProtocol.RESPONSES, version="v1")
        ],
        cpu="1",
        memory="2Gi",
        image="myregistry.azurecr.io/my-agent:latest",
        tools=[{"type": "code_interpreter"}],
        environment_variables={
            "AZURE_AI_PROJECT_ENDPOINT": os.environ["AZURE_AI_PROJECT_ENDPOINT"],
            "MODEL_NAME": "gpt-4o-mini"
        }
    )
)

print(f"Created agent: {agent.name} (version: {agent.version})")

3. List Agent Versions

versions = client.agents.list_versions(agent_name="my-hosted-agent")
for version in versions:
    print(f"Version: {version.version}, State: {version.state}")

4. Delete Agent Version

client.agents.delete_version(
    agent_name="my-hosted-agent",
    version=agent.version
)

ImageBasedHostedAgentDefinition Parameters

Parameter Type Required Description
container_protocol_versions list[ProtocolVersionRecord] Yes Protocol versions the agent supports
image str Yes Full container image path (registry/image:tag)
cpu str No CPU allocation (e.g., “1”, “2”)
memory str No Memory allocation (e.g., “2Gi”, “4Gi”)
tools list[dict] No Tools available to the agent
environment_variables dict[str, str] No Environment variables for the container

Protocol Versions

The container_protocol_versions parameter specifies which protocols your agent supports:

from azure.ai.projects.models import ProtocolVersionRecord, AgentProtocol

# RESPONSES protocol - standard agent responses
container_protocol_versions=[
    ProtocolVersionRecord(protocol=AgentProtocol.RESPONSES, version="v1")
]

Available Protocols:

Protocol Description
AgentProtocol.RESPONSES Standard response protocol for agent interactions

Resource Allocation

Specify CPU and memory for your container:

definition=ImageBasedHostedAgentDefinition(
    container_protocol_versions=[...],
    image="myregistry.azurecr.io/my-agent:latest",
    cpu="2",      # 2 CPU cores
    memory="4Gi"  # 4 GiB memory
)

Resource Limits:

Resource Min Max Default
CPU 0.5 4 1
Memory 1Gi 8Gi 2Gi

Tools Configuration

Add tools to your hosted agent:

Code Interpreter

tools=[{"type": "code_interpreter"}]

MCP Tools

tools=[
    {"type": "code_interpreter"},
    {
        "type": "mcp",
        "server_label": "my-mcp-server",
        "server_url": "https://my-mcp-server.example.com"
    }
]

Multiple Tools

tools=[
    {"type": "code_interpreter"},
    {"type": "file_search"},
    {
        "type": "mcp",
        "server_label": "custom-tool",
        "server_url": "https://custom-tool.example.com"
    }
]

Environment Variables

Pass configuration to your container:

environment_variables={
    "AZURE_AI_PROJECT_ENDPOINT": os.environ["AZURE_AI_PROJECT_ENDPOINT"],
    "MODEL_NAME": "gpt-4o-mini",
    "LOG_LEVEL": "INFO",
    "CUSTOM_CONFIG": "value"
}

Best Practice: Never hardcode secrets. Use environment variables or Azure Key Vault.

Complete Example

import os
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
from azure.ai.projects.models import (
    ImageBasedHostedAgentDefinition,
    ProtocolVersionRecord,
    AgentProtocol,
)

def create_hosted_agent():
    """Create a hosted agent with custom container image."""
    
    client = AIProjectClient(
        endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
        credential=DefaultAzureCredential()
    )
    
    agent = client.agents.create_version(
        agent_name="data-processor-agent",
        definition=ImageBasedHostedAgentDefinition(
            container_protocol_versions=[
                ProtocolVersionRecord(
                    protocol=AgentProtocol.RESPONSES,
                    version="v1"
                )
            ],
            image="myregistry.azurecr.io/data-processor:v1.0",
            cpu="2",
            memory="4Gi",
            tools=[
                {"type": "code_interpreter"},
                {"type": "file_search"}
            ],
            environment_variables={
                "AZURE_AI_PROJECT_ENDPOINT": os.environ["AZURE_AI_PROJECT_ENDPOINT"],
                "MODEL_NAME": "gpt-4o-mini",
                "MAX_RETRIES": "3"
            }
        )
    )
    
    print(f"Created hosted agent: {agent.name}")
    print(f"Version: {agent.version}")
    print(f"State: {agent.state}")
    
    return agent

if __name__ == "__main__":
    create_hosted_agent()

Async Pattern

import os
from azure.identity.aio import DefaultAzureCredential
from azure.ai.projects.aio import AIProjectClient
from azure.ai.projects.models import (
    ImageBasedHostedAgentDefinition,
    ProtocolVersionRecord,
    AgentProtocol,
)

async def create_hosted_agent_async():
    """Create a hosted agent asynchronously."""
    
    async with DefaultAzureCredential() as credential:
        async with AIProjectClient(
            endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
            credential=credential
        ) as client:
            agent = await client.agents.create_version(
                agent_name="async-agent",
                definition=ImageBasedHostedAgentDefinition(
                    container_protocol_versions=[
                        ProtocolVersionRecord(
                            protocol=AgentProtocol.RESPONSES,
                            version="v1"
                        )
                    ],
                    image="myregistry.azurecr.io/async-agent:latest",
                    cpu="1",
                    memory="2Gi"
                )
            )
            return agent

Common Errors

Error Cause Solution
ImagePullBackOff ACR pull permission denied Grant AcrPull role to project’s managed identity
InvalidContainerImage Image not found Verify image path and tag exist in ACR
CapabilityHostNotFound No capability host configured Create account-level capability host
ProtocolVersionNotSupported Invalid protocol version Use AgentProtocol.RESPONSES with version "v1"

Best Practices

  1. Version Your Images – Use specific tags, not latest in production
  2. Minimal Resources – Start with minimum CPU/memory, scale up as needed
  3. Environment Variables – Use for all configuration, never hardcode
  4. Error Handling – Wrap agent creation in try/except blocks
  5. Cleanup – Delete unused agent versions to free resources

Reference Links