task-based-multiagent
0
总安装量
6
周安装量
安装命令
npx skills add https://github.com/melodic-software/claude-code-plugins --skill task-based-multiagent
Agent 安装分布
antigravity
4
claude-code
3
windsurf
3
opencode
3
gemini-cli
3
Skill 文档
Task-Based Multi-Agent Skill
Guide creation of task-based multi-agent systems using shared task files and worktree isolation.
When to Use
- Setting up parallel agent execution
- Managing multiple concurrent workflows
- Scaling beyond single-agent patterns
- Building task queue systems
Core Concept
Agents share a task file that acts as a coordination mechanism:
## To Do
- [ ] Task A
- [ ] Task B
## In Progress
- [ð¡ abc123] Task C - being worked on
## Done
- [â
def456] Task D - completed
Task File Format
tasks.md:
# Tasks
## Git Worktree {worktree-name}
## To Do
[] Pending task description # Available
[â°] Blocked task (waits for above) # Blocked
[] Task with #opus tag # Model override
[] Task with #adw_plan_implement tag # Workflow override
## In Progress
[ð¡, adw_12345] Task being processed # Claimed by agent
## Done
[â
abc123, adw_12345] Completed task # Commit hash saved
[â, adw_12345] Failed task // Error reason # Error captured
Status Markers
| Marker | Meaning | State |
|---|---|---|
[] |
Pending | Available for pickup |
[â°] |
Blocked | Waiting for previous |
[ð¡, {id}] |
In Progress | Being processed |
[â
{hash}, {id}] |
Complete | Finished successfully |
[â, {id}] |
Failed | Error occurred |
Tag System
Tags modify agent behavior:
| Tag | Effect |
|---|---|
#opus |
Use Opus model |
#sonnet |
Use Sonnet model |
#adw_plan_implement |
Complex workflow |
#adw_build |
Simple build workflow |
Implementation Architecture
âââââââââââââââââââââââââââââââââââââââââââ
â CRON TRIGGER â
â (polls tasks.md every N seconds) â
âââââââââââââââââââ¬ââââââââââââââââââââââââ
â
âââââââââââ¼ââââââââââ
â â â
v v v
ââââââââââ ââââââââââ ââââââââââ
â Task A â â Task B â â Task C â
âWorktreeâ âWorktreeâ âWorktreeâ
â 1 â â 2 â â 3 â
ââââââââââ ââââââââââ ââââââââââ
Setup Workflow
Step 1: Create Task File
# tasks.md
## To Do
[] First task to complete
[] Second task to complete
[â°] Blocked until first completes
## In Progress
## Done
Step 2: Create Data Models
from pydantic import BaseModel
from typing import Literal, Optional, List
class Task(BaseModel):
description: str
status: Literal["[]", "[â°]", "[ð¡]", "[â
]", "[â]"]
adw_id: Optional[str] = None
commit_hash: Optional[str] = None
tags: List[str] = []
worktree_name: Optional[str] = None
Step 3: Create Trigger Script
# adw_trigger_cron_tasks.py
def main():
while True:
tasks = parse_tasks_file("tasks.md")
pending = [t for t in tasks if t.status == "[]"]
for task in pending:
if not is_blocked(task):
# Mark as in progress
claim_task(task)
# Spawn subprocess
spawn_task_workflow(task)
time.sleep(5) # Poll interval
Step 4: Create Task Workflows
# adw_build_update_task.py (simple)
def main(task_id: str):
# Mark in progress
update_task_status(task_id, "[ð¡]")
# Execute /build
response = execute_template("/build", task_description)
# Mark complete
if response.success:
update_task_status(task_id, "[â
]", commit_hash)
else:
update_task_status(task_id, "[â]", error_reason)
Step 5: Add Worktree Isolation
Each task gets its own worktree:
git worktree add trees/{task_id} -b task-{task_id} origin/main
Coordination Rules
- Claim before processing: Update status to
[ð¡]immediately - Respect blocking: Don’t process
[â°]tasks until dependencies complete - Update on completion: Always update status, even on failure
- Include context: Save commit hash, error reason, ADW ID
Key Memory References
- @git-worktree-patterns.md – Worktree isolation
- @composable-primitives.md – Workflow composition
- @zte-progression.md – Scaling to ZTE
Output Format
## Multi-Agent System Setup
**Task File:** tasks.md
**Trigger Interval:** 5 seconds
**Max Concurrent:** 5 agents
### Components
1. Task file format with status markers
2. Data models (Task, Status, Tags)
3. Cron trigger script
4. Task workflow scripts
5. Worktree isolation
### Workflow Routing
- Default: adw_build_update_task.py
- #adw_plan_implement: adw_plan_implement_update_task.py
- #opus: Use Opus model
### Status Flow
[] -> [ð¡, id] -> [â
hash, id]
-> [â, id] // error
Anti-Patterns
- Polling too frequently (< 1 second)
- Not claiming before processing (race conditions)
- Ignoring blocked tasks
- Not capturing failure reasons
- Running in same directory (no isolation)
Version History
- v1.0.0 (2025-12-26): Initial release
Last Updated
Date: 2025-12-26 Model: claude-opus-4-5-20251101