mviz

📁 matsonj/mviz 📅 Jan 20, 2026
56
总安装量
56
周安装量
#3901
全站排名
安装命令
npx skills add https://github.com/matsonj/mviz --skill mviz

Agent 安装分布

claude-code 43
opencode 34
codex 25
cursor 25
antigravity 18

Skill 文档

mviz v1.6.0

mviz

Generate clean, data-focused charts and dashboards from compact JSON specs or markdown. Maximizes data-ink ratio with minimal chartjunk, gridlines, and decorative elements. Uses a 16-column grid layout system.

Setup

No installation required. Use npx -y -q mviz which auto-downloads from npm. The -q flag reduces npm output while still showing lint errors.

For faster repeated use, install globally: npm install -g mviz

What This Skill Does

Converts minimal JSON specifications into standalone HTML visualizations using ECharts. Instead of writing 50-100 lines of chart code, write a compact spec that gets expanded into a full HTML artifact with professional styling.

Visual Style (mdsinabox theme)

  • Font: Helvetica Neue, Arial (clean sans-serif)
  • Signature: Orange accent line at top of dashboards
  • Palette: Blue primary, orange secondary, semantic colors (green=positive, amber=warning, red=error)
  • Background: Paper (#f8f8f8 light) / Dark (#231f20 dark)
  • Principles: High data-ink ratio, no chartjunk, minimal gridlines, data speaks for itself

How to Use

Single Chart (JSON)

echo '<json_spec>' | npx -y -q mviz -o chart.html

Dashboard from Markdown

npx -y -q mviz dashboard.md -o dashboard.html

Dashboard from Folder

npx -y -q mviz my-dashboard/ -o dashboard.html

16-Column Grid System

Components are sized using size=[cols,rows] syntax:

```big_value size=[4,2]
{"value": 1250000, "label": "Revenue", "format": "currency0m"}
```
```bar size=[8,6]
{"title": "Sales", "x": "month", "y": "sales", "file": "data/sales.json"}
```
  • 16 columns total width (both portrait and landscape)
  • Row height: ~32px per row unit (approximate – charts have padding)
  • Page capacity: Portrait [16c × 30r], Landscape [16c × 22r]
  • Components on same line share the row
  • Empty line = new row

Height Guidelines:

Row Units Approximate Height Good For
2 ~64px KPIs, single-line notes
4 ~128px Small tables, text blocks
5-6 ~160-192px Standard charts
8+ ~256px+ Dense tables, detailed charts

For charts with many categories (10+ bars, 10+ rows in dumbbell), increase row units to prevent compression.

Side-by-Side Layout

Critical: To place components side-by-side, their code blocks must have NO blank lines between them:

```bar size=[8,5]
{"title": "Chart A", ...}
```
```line size=[8,5]
{"title": "Chart B", ...}
```

This renders Chart A and Chart B on the same row. Adding a blank line between them would put them on separate rows.

Headings and Section Breaks

Syntax Effect
# H1 Major section title
## H2 Section title
### H3 Light inline header (subtle, smaller text)
--- Visual divider line
=== Page break for printing
=== Explicit page break: forces new page in PDF
empty_space Invisible grid cell spacer (default 4 cols × 2 rows)

Heading Guidelines:

  • Use # H1 for major document sections that warrant their own page when printed
  • Use ## H2 for content sections within a page (most common)
  • Use ### H3 for lightweight subheadings that don’t interrupt flow
  • In continuous: true mode, H1 page breaks are suppressed

Section vs Page Breaks:

  • Use --- to separate logical sections visually. Content flows naturally to the next page when needed.
  • Use === only when you explicitly want to force a new page (e.g., separating chapters or major report sections for PDF output).
  • Never use === by default. Only add page breaks when the user specifically requests them.

Default Sizes

Component Default Size Notes
big_value [4, 2] Fits 4 per row
delta [4, 2] Fits 4 per row
sparkline [4, 2] Compact inline chart
bar, line, area [8, 5] Half width
pie, scatter, bubble [8, 5] Half width
funnel, sankey, heatmap [8, 5] Half width
histogram, boxplot, waterfall [8, 5] Half width
combo [8, 5] Half width
dumbbell [12, 6] 3/4 width
table [16, 4] Full width
textarea [16, 4] Full width
calendar [16, 3] Full width
xmr [16, 6] Full width, tall
mermaid [8, 5] Half width (use ascii: true for text art)
alert, note, text [16, 1] Full width, single row
empty_space [4, 2] Invisible spacer

Recommended Size Pairings

Layout Goal Components Sizes
4 KPIs in a row 4× big_value [4,2] each
5 KPIs in a row 4× big_value + 1 wider [3,2] + [4,2]
KPI + context big_value + textarea [3,2] + [13,2]
KPI + chart big_value + bar [4,2] + [12,5]

Example: Dense KPI Row

```big_value size=[3,2]
{"value": 1250000, "label": "Revenue", "format": "currency0m"}
```
```big_value size=[3,2]
{"value": 8450, "label": "Orders", "format": "num0k"}
```
```big_value size=[3,2]
{"value": 2400000000, "label": "Queries", "format": "num0b"}
```
```delta size=[3,2]
{"value": 0.15, "label": "MoM", "format": "pct0"}
```
```delta size=[4,2]
{"value": 0.08, "label": "vs Target", "format": "pct0"}
```

This creates a row with 5 KPIs (3+3+3+3+4 = 16 columns).

Example: Two Charts Side by Side

```bar size=[8,6] file=data/region-sales.json
```
```line size=[8,6] file=data/monthly-trend.json
```

Supported Types

Charts: bar, line, area, pie, scatter, bubble, boxplot, histogram, waterfall, xmr, sankey, funnel, heatmap, calendar, sparkline, combo, dumbbell, mermaid

UI Components: big_value, delta, alert, note, text, textarea, empty_space, table

Table Formatting

Tables support column-level and cell-level formatting:

Column options: bold, italic, type (“sparkline” or “heatmap”)

{
  "type": "table",
  "columns": [
    {"id": "product", "title": "Product", "bold": true},
    {"id": "category", "title": "Category", "italic": true},
    {"id": "sales", "title": "Sales", "fmt": "currency"},
    {"id": "margin", "title": "Margin", "type": "heatmap", "fmt": "pct"},
    {"id": "trend", "title": "Trend", "type": "sparkline", "sparkType": "line"}
  ],
  "data": [
    {"product": "Widget", "category": "Electronics", "sales": 125000, "margin": 0.85, "trend": [85, 92, 88, 95, 102, 125]}
  ]
}

Cell-level overrides: Use {"value": "text", "bold": true} to override column defaults.

Heatmap: Applies color gradient from low to high values. Text auto-switches to white on dark backgrounds.

Sparkline types: line, bar, area, pct_bar (progress bar), dumbbell (before/after comparison)

Note Types

Notes support three severity levels via noteType:

Type Border Color Use For
default Red Important notices (default)
warning Yellow Cautions, preliminary data
tip Green Best practices, pro tips

Notes also support an optional label for bold prefix text:

{"type": "note", "label": "Pro Tip:", "content": "Use keyboard shortcuts for faster navigation.", "noteType": "tip"}

Specialized Chart Examples

big_value – Hero metrics with large display:

{"type": "big_value", "value": 1250000, "label": "Revenue", "format": "currency0m"}
  • Optional comparison object: {"value": 10300, "format": "currency", "label": "vs last month"} shows change with arrow

dumbbell – Before/after comparisons with directional coloring:

{
  "type": "dumbbell",
  "title": "ELO Changes",
  "category": "team",
  "start": "before",
  "end": "after",
  "startLabel": "Week 1",
  "endLabel": "Week 2",
  "higherIsBetter": true,
  "data": [
    {"team": "Chiefs", "before": 1650, "after": 1720},
    {"team": "Bills", "before": 1600, "after": 1550}
  ]
}
  • Green = improvement, Red = decline, Grey = no change
  • higherIsBetter: false for rankings (lower = better)
  • Labels auto-abbreviate large numbers (7450 → “7k”)

delta – Change metrics with directional coloring:

{"type": "delta", "value": 0.15, "label": "MoM Growth", "format": "pct0"}
  • Positive values show green with ▲, negative show red with ▼
  • Optional comparison object: {"value": 0.05, "label": "vs Target"}

area – Filled line chart for cumulative/volume data:

{
  "type": "area",
  "title": "Daily Active Users",
  "x": "date",
  "y": "users",
  "data": [{"date": "Mon", "users": 1200}, {"date": "Tue", "users": 1450}]
}

combo – Bar + line with dual Y-axis:

{
  "type": "combo",
  "title": "Revenue vs Growth Rate",
  "x": "quarter",
  "y": ["revenue", "growth_rate"],
  "data": [
    {"quarter": "Q1", "revenue": 1000000, "growth_rate": 0.15},
    {"quarter": "Q2", "revenue": 1200000, "growth_rate": 0.20}
  ]
}
  • First y-field renders as bars, second as line
  • Dual Y-axes with independent scales

heatmap – 2D matrix visualization:

{
  "type": "heatmap",
  "title": "Activity by Hour",
  "xCategories": ["Mon", "Tue", "Wed", "Thu", "Fri"],
  "yCategories": ["9am", "12pm", "3pm", "6pm"],
  "format": "num0",
  "data": [[0, 0, 85], [1, 0, 90], [2, 0, 72]]
}
  • format option applies to cell labels (e.g., num0k, currency0k, pct)

funnel – Conversion or elimination flows:

{
  "type": "funnel",
  "title": "Sales Pipeline",
  "format": "num0",
  "data": [
    {"stage": "Leads", "value": 1000},
    {"stage": "Qualified", "value": 600},
    {"stage": "Proposal", "value": 300},
    {"stage": "Closed", "value": 100}
  ]
}
  • format option applies to labels/tooltips (e.g., currency_auto, pct, num0)

waterfall – Cumulative change visualization:

{
  "type": "waterfall",
  "title": "Revenue Bridge",
  "x": "item",
  "y": "value",
  "data": [
    {"item": "Start", "value": 1000, "isTotal": true},
    {"item": "Growth", "value": 200},
    {"item": "Churn", "value": -50},
    {"item": "End", "value": 1150, "isTotal": true}
  ]
}

bubble – Scatter plot with size dimension:

{
  "type": "bubble",
  "title": "Market Analysis",
  "x": "growth",
  "y": "profit",
  "size": "revenue",
  "data": [
    {"growth": 5, "profit": 20, "revenue": 100},
    {"growth": 10, "profit": 15, "revenue": 200}
  ]
}

sankey – Flow diagrams showing relationships:

{
  "type": "sankey",
  "title": "Traffic Sources",
  "data": [
    {"source": "Organic", "target": "Landing", "value": 500},
    {"source": "Paid", "target": "Landing", "value": 300},
    {"source": "Landing", "target": "Signup", "value": 400}
  ]
}

mermaid – Diagrams from Mermaid syntax (flowcharts, sequence, state, class, ER). Use array for multi-line code:

{
  "type": "mermaid",
  "title": "User Flow",
  "code": [
    "graph TD",
    "  A[Start] --> B{Decision}",
    "  B -->|Yes| C[Action]",
    "  B -->|No| D[End]"
  ]
}

mermaid (ASCII) – ASCII/Unicode text-based diagrams (set ascii: true):

{
  "type": "mermaid",
  "title": "Process Flow",
  "code": ["graph LR", "  A[Input] --> B[Process] --> C[Output]"],
  "ascii": true
}

Mermaid lint rules (errors that will fail validation):

  • No <br/> tags in labels (render as literal text, not line breaks)
  • No quoted labels like A["text"] in flowcharts (quotes appear in output)

Number Format Options

Format Example Use For
auto 1.000m, 10.00k Smart auto-format (recommended)
currency_auto $1.000m, $10.00k Smart auto-format with $ prefix
currency0m $1.2m Millions
currency0b $1.2b Billions
currency0k $125k Thousands
currency $1,250,000 Detailed amounts
num0m 1.2m Millions
num0b 1.2b Billions
num0k 125k Thousands
num0 1,250,000 Detailed counts
pct 15.0% Percentage with decimal
pct0 15% Percentage integer
pct1 15.0% Percentage with 1 decimal

Important: Percentage formats expect decimal values (0.25 = 25%), not whole numbers.

Smart formatting (auto/currency_auto) is recommended. The format option applies to both axis labels and data labels on bar charts. It automatically picks the right suffix (k, m, b) based on magnitude and always shows 4 significant digits. Negative values are wrapped in parentheses: (1.000m).

When no format is specified, smart formatting is used by default.

Auto-Detected Axis Formatting

Chart axes automatically detect the appropriate format based on field names:

Field Pattern Auto Format Example
revenue, sales, price, cost, profit, amount currency_auto $1.250m
pct, percent, rate, ratio pct 15.0%
All other numeric fields auto 1.250m

Override with an explicit format field in the chart spec.

Columnar Data Format

The chart generator auto-detects columnar query results. Instead of manually converting columns/rows to data, pass the result directly:

{
  "type": "bar",
  "title": "Sales by Region",
  "x": "region",
  "y": "sales",
  "columns": ["region", "sales"],
  "rows": [["North", 45000], ["South", 32000], ["East", 28000]]
}

This is automatically converted internally. No manual JSON reconstruction needed.

Axis Bounds (yMin/yMax)

For line, area, bar, and combo charts, control y-axis range with yMin and yMax:

{
  "type": "line",
  "title": "Elo Rating Trend",
  "x": "date",
  "y": "elo",
  "yMin": 1400,
  "data": [{"date": "Oct", "elo": 1511}, {"date": "Jan", "elo": 1636}]
}

Use yMin when:

  • Data doesn’t start at 0 (ratings, stock prices, temperatures)
  • You want to emphasize relative changes over absolute values

Use yMax when:

  • Labels are being cut off at the top of the chart
  • You need headroom above the highest data point

Validation & Lint Rules

The CLI validates specs automatically using built-in lint rules. Use --lint flag for validation-only mode:

npx -y -q mviz --lint dashboard.md  # Validate without generating HTML

Lint Rules

Rule Severity Trigger
required-fields warning Missing required fields like x, y, or data
unknown-field warning Field not recognized for the chart type
time-series-sorted error Time series data not in chronological order
sankey-wrong-keys error Using from/to instead of source/target
big-value-string error Passing "62.5%" string instead of 0.625 number
duplicate-x-values warning Duplicate values on x-axis
mermaid-no-br-tags error <br/> tags in mermaid code (render as literal text)
mermaid-no-quoted-labels error Quoted labels like A["text"] in flowcharts

Errors exit with code 1. Warnings log to stderr but don’t fail.

Common Fixes

Time series error: Sort your data by date before passing to the chart.

Sankey wrong keys: Use source, target, value in your data:

{"source": "A", "target": "B", "value": 100}

big_value string: Pass numeric value with format option:

{"type": "big_value", "value": 0.625, "format": "pct0", "label": "Rate"}

Troubleshooting

Warning Messages

The generator outputs helpful warnings to stderr when issues are detected:

Warning Cause Solution
Invalid JSON in 'bar' block Malformed JSON syntax Check JSON syntax, ensure proper quoting
Unknown component type 'bars' Typo in chart type Use suggested type (e.g., bar not bars)
Cannot resolve 'file=...' File reference without base directory Use file path argument or inline JSON
Row exceeds 16 columns Too many components in one row Reduce component widths or split into rows

Warnings include context like content previews, similar type suggestions, and section/row info.

Labels Cut Off at Chart Edges

If data labels on bar, line, or area charts are being cut off at the top:

  1. Find the maximum value in your data
  2. Set yMax to ~10-15% higher than that value

Example: If max value is 200, set "yMax": 220

{
  "type": "bar",
  "title": "Sales",
  "x": "month",
  "y": "sales",
  "yMax": 250,
  "data": [{"month": "Jan", "sales": 180}, {"month": "Feb", "sales": 220}]
}

This provides headroom for the label text above the bars.

Data Generation Best Practice

Use SQL to generate data files instead of manually authoring JSON. This reduces errors and ensures data accuracy:

-- Generate chart data file
COPY (
  SELECT month, SUM(sales) as sales, SUM(revenue) as revenue
  FROM orders
  GROUP BY month
  ORDER BY month
) TO 'data/monthly-sales.json' (FORMAT JSON, ARRAY true);

Then reference the generated file:

```bar file=data/monthly-sales.json
{"title": "Monthly Sales", "x": "month", "y": "sales"}
```

This approach:

  • Ensures data accuracy (no manual transcription errors)
  • Keeps data in sync with source systems
  • Reduces token usage (SQL is more compact than JSON arrays)
  • Makes updates easy (re-run query to refresh)

File References (JSON and CSV)

Reference external data files to save tokens and enable data/visualization separation:

JSON Files

```bar size=[8,6] file=data/sales.json
```

CSV Files (DuckDB Workflow)

CSV files work great with DuckDB for data exploration:

# Export query results to CSV
duckdb -csv -c "SELECT quarter, revenue FROM sales" > data/quarterly.csv
```bar file=data/quarterly.csv
{"title": "Quarterly Revenue", "x": "quarter", "y": "revenue"}
```
  • CSV provides data, inline JSON provides chart options (title, x, y, format)
  • Auto-detection: If no inline options, first column = x, second column = y
  • Type conversion: Numeric strings auto-convert to int/float

Benefits of File References

Approach Best For
Inline JSON Small, static specs
JSON files Reusable chart configs
CSV files DuckDB workflows, frequently updated data

Dashboard Markdown Format

---
theme: light
title: My Dashboard
---

# Page Title

## Section Name

```big_value size=[4,2]
{"value": 125000, "label": "Revenue", "format": "currency0k"}
```
```bar size=[12,6] file=data/sales.json
```

Rules:

  • # Title sets the page title (first occurrence only)
  • ## Section creates a new section with divider (border, spacing)
  • ### Header creates a soft header within the current section (no divider)
  • --- creates a section break (untitled, visual divider only)
  • === creates a page break (forces new page when printing to PDF)
  • size=[cols,rows] controls layout (16-column grid)
  • size=auto auto-calculates size from data
  • file=path references external JSON
  • Empty lines = new rows

Theme Toggle

Dashboards include a theme toggle button (top right) that switches between light and dark modes. All charts dynamically update when the theme changes.

Set the default theme in frontmatter:

---
title: My Dashboard
theme: dark
orientation: landscape
print: true
---
Option Description
title Dashboard title displayed at top
theme light (default) or dark
orientation portrait (default) or landscape for print layout
print When true, requires explicit size=[cols,rows] on all components
continuous When true, removes section breaks between # headers for flowing layout

Page capacity: Portrait fits 30 row units, landscape fits 22 row units (Letter paper, 0.5″ margins).

The theme toggle affects all charts globally – individual chart theme settings are ignored in favor of the global toggle.

Custom Themes

Load custom brand colors and fonts from a YAML file:

npx -y -q mviz --theme my_theme.yaml dashboard.md -o dashboard.html

Example theme file:

name: brand-colors
extends: light

colors:
  primary: "#1a73e8"
  secondary: "#ea4335"

palette:
  - "#1a73e8"
  - "#ea4335"
  - "#fbbc04"

fonts:
  family: "'Roboto', sans-serif"
  import: "https://fonts.googleapis.com/css2?family=Roboto&display=swap"

Custom themes merge with defaults – only specify what you want to override.

Print and PDF Support

Charts are optimized for printing to PDF:

  • High-Quality Rendering: Uses SVG renderer for crisp vector graphics at any zoom level
  • No Page Breaks: CSS prevents charts and tables from being split across pages
  • All Labels Visible: Category labels always shown with 45° rotation to fit

When printing dashboards to PDF, all content stays intact without being cut off mid-chart.

JSON Formatting for Editability

Use formatted (multi-line) JSON when data may need editing. This enables smaller, more precise edits:

```bar size=[8,5]
{
  "title": "Monthly Sales",
  "x": "month",
  "y": "sales",
  "data": [
    {"month": "Jan", "sales": 120},
    {"month": "Feb", "sales": 150},
    {"month": "Mar", "sales": 180}
  ]
}
```

Benefits:

  • Each data point on its own line enables targeted edits
  • Changing one value: ~30 chars vs ~200+ chars with compact JSON
  • Easier to review diffs in version control

When to use compact JSON:

  • Very small specs (< 100 chars)
  • Data that won’t change
  • Single-line values like {"value": 1250000, "label": "Revenue"}

JSON Schema

mviz specs can be validated using the JSON Schema at:

https://raw.githubusercontent.com/matsonj/mviz/main/schema/mviz.schema.json

Add $schema to enable editor autocomplete and validation:

{
  "$schema": "https://raw.githubusercontent.com/matsonj/mviz/main/schema/mviz.schema.json",
  "type": "bar",
  "title": "Sales",
  ...
}

Color Palette (mdsinabox theme)

Color Hex Use
Primary Blue #0777b3 Primary series
Secondary Orange #bd4e35 Secondary series, accent
Info Blue #638CAD Tertiary, informational
Positive Green #2d7a00 Success, positive values
Warning Amber #e18727 Warnings
Error Red #bc1200 Errors, negative emphasis

See reference/chart-types.md for complete documentation.

Your Role

You are an analytics assistant helping a human who has decision-making context that you lack. Your job is to present data clearly and surface patterns worth investigating—not to draw conclusions or make recommendations.

Key principles:

  • Use a matter-of-fact tone. State what the data shows, not what it means.
  • Design analysis that invites further questions, not analysis that closes them.
  • Surface anomalies and patterns without assuming their cause or significance.
  • Let the human add context and make decisions.

For additional guidance on creating effective data visualizations—including Tufte-inspired principles, anti-patterns to avoid, and layout examples—see Best_practices.md.

Feedback

Having issues with mviz? Ask Claude to create a friction log documenting the problem, then open it as an issue at https://github.com/matsonj/mviz/issues