ln-723-seed-data-generator

📁 levnikolaevich/claude-code-skills 📅 6 days ago
0
总安装量
5
周安装量
安装命令
npx skills add https://github.com/levnikolaevich/claude-code-skills --skill ln-723-seed-data-generator

Agent 安装分布

claude-code 4
antigravity 3
replit 3
opencode 3
openclaw 2

Skill 文档

Paths: File paths (shared/, references/, ../ln-*) are relative to skills repo root. If not found at CWD, locate this SKILL.md directory and go up one level for repo root.

ln-723-seed-data-generator

Type: L3 Worker Category: 7XX Project Bootstrap Parent: ln-720-structure-migrator

Universal seed data generator with two modes: MIGRATE (parse existing ORM schemas) or GENERATE (create from entity definitions). Outputs to any target format (C#, TypeScript, Python, JSON, SQL).


Purpose & Scope

Aspect Description
Input ORM schema files (MIGRATE) or entity list (GENERATE)
Output Seed data files in target format
Modes MIGRATE: parse existing ORM → seed data. GENERATE: entity definitions → seed data

Scope boundaries:

  • Parses ORM schema definitions or accepts entity lists
  • Generates seed data in requested target format
  • Creates realistic sample data using faker libraries
  • Does not generate database migrations, EF Core configs, or ORM models

Mode Selection

Mode When Input Source
MIGRATE TRANSFORM pipeline — existing ORM schemas found ORM schema files Drizzle, Prisma, TypeORM, EF Core, SQLAlchemy, Django ORM
GENERATE CREATE pipeline — no existing schemas Entity list from ln-700 Phase 0 User-provided or starter template (User, Role)

If GENERATE mode receives no entity list, generate starter template with User (id, name, email, role, createdAt) and Role (id, name, description).


Target Formats

Format Output File Faker Library Use Case
C# MockData MockData.cs Bogus .NET projects
TypeScript fixtures seed.ts Faker.js Node/React projects
Python factories factories.py Faker (Python) Django/Flask projects
JSON seed.json — API testing, import scripts
SQL seed.sql — Direct DB seeding

Workflow

Phase Name Actions Output
1 Parse/Define 1A: Parse ORM schema (MIGRATE) or 1B: Accept entity list (GENERATE) Entity model
2 Map Types Apply universal type mapping to target format Target type definitions
3 Generate Seed Data Create seed files with faker-based realistic data Seed data files
4 Verify Validate relationships, check syntax Valid seed files

Phase 1: Parse/Define

1A: MIGRATE Mode — Parse ORM Schema

Step Action Reference
1A.1 Locate schema file(s) —
1A.2 Auto-detect ORM type orm_patterns.md — ORM Auto-Detection table
1A.3 Extract table/model definitions orm_patterns.md — per-ORM parsing section
1A.4 Extract column definitions with types orm_patterns.md
1A.5 Identify constraints (PK, FK, nullable, unique) orm_patterns.md
1A.6 Extract enum definitions orm_patterns.md

1B: GENERATE Mode — Accept Entity Definitions

Step Action Reference
1B.1 Receive entity list from orchestrator (or use starter template) —
1B.2 Parse entity definitions (name, fields, types) —
1B.3 Infer relationships from field names (userId → FK to User) relationship_mapping.md
1B.4 Apply default constraints (id = PK, *Id = FK) —

Output: Entity model with columns, types, and constraints.


Phase 2: Map Types

Convert entity types to target format types.

Step Action Reference
2.1 Select target format (from orchestrator params) —
2.2 Map column types to target format type_mapping.md — Universal Type Mapping table
2.3 Determine nullable status per target type_mapping.md
2.4 Map foreign keys and relationships relationship_mapping.md
2.5 Transform names to target convention See Name Conventions table below

Name Conventions by Target:

Target Class/Model Property/Field File
C# PascalCase singular PascalCase PascalCase.cs
TypeScript PascalCase singular camelCase camelCase.ts
Python PascalCase singular snake_case snake_case.py
JSON camelCase camelCase kebab-case.json
SQL snake_case plural snake_case snake_case.sql

Phase 3: Generate Seed Data

Create seed files with realistic data using faker libraries.

Step Action Reference
3.1 Determine generation order (parents → children) relationship_mapping.md
3.2 Generate IDs (GUIDs/UUIDs) for all entities data_generation.md
3.3 Generate field values using faker data_generation.md, type_mapping.md — Faker Integration
3.4 Ensure FK relationships valid (child references existing parent ID) relationship_mapping.md
3.5 Write seed file in target format —

Faker integration rule: All generated seed files MUST use faker libraries for realistic data with deterministic seeding (fixed seed value for reproducibility).

Target Faker Setup
C# var faker = new Bogus.Faker(); Randomizer.Seed = new Random(42);
TypeScript import { faker } from '@faker-js/faker'; faker.seed(42);
Python from faker import Faker; fake = Faker(); Faker.seed(42)

Generation order by dependency:

Order Entity Type Generate After
1 Root entities (no FK) First
2 First-level children Parents exist
3 Second-level children Grandparents exist
N Deepest children All ancestors exist

Phase 4: Verify

Check Method Expected
Syntax valid Language-specific check No syntax errors
FKs valid Cross-reference All FKs point to existing IDs
Types correct Type analysis Proper types for target format
Names follow convention Pattern check Per-target naming convention
Faker deterministic Re-run with same seed Identical output

Supported ORM Detection

ORM Detection Pattern Ecosystem
Drizzle pgTable(), mysqlTable(), sqliteTable() Node.js
Prisma model X { syntax in .prisma files Node.js
TypeORM @Entity(), @Column() decorators Node.js
EF Core DbContext, DbSet<>, [Table] attributes .NET
SQLAlchemy Base = declarative_base(), Column() Python
Django ORM models.Model, models.CharField() Python

Entity Transformation Rules

Source Target Transformation
Table name (plural, snake) Class name (singular, Pascal) user_profiles → UserProfile
Column name (snake) Property name (target convention) created_at → CreatedAt / createdAt / created_at
Enum name Enum type (Pascal) status_enum → StatusEnum
FK column Navigation property user_id → UserId / userId

Sample Data Guidelines

Field Type Sample Count Distribution
Root entities 3-5 items Varied status/priority
Child entities 5-10 items Distributed across parents
Leaf entities 10-20 items Realistic variety

Critical Rules

  • Single Responsibility: Generate only seed data, no ORM models or migrations
  • Idempotent: Can re-run with same seed to produce identical output
  • Valid Relationships: All FKs must reference existing parent IDs
  • Faker Required: Use faker libraries for realistic data, never random strings
  • Deterministic Seeding: Fixed seed value (42) for reproducibility across re-runs
  • Generation Order: Parents before children, always
  • Mode Awareness: MIGRATE parses files; GENERATE accepts definitions — never mix

Definition of Done

  • Mode determined (MIGRATE or GENERATE)
  • Entity model extracted/defined with all fields and constraints
  • Target format selected and type mappings applied
  • Seed data files generated with faker-based realistic values
  • Deterministic seeding verified (re-run produces identical output)
  • Foreign keys reference valid parent IDs
  • Names follow target format conventions
  • Sample data includes 5-10 items per entity

Risk Mitigation

Risk Detection Mitigation
Unknown ORM type Auto-detection fails Log warning, ask orchestrator for ORM hint
Invalid type mapping Unknown column type Use string as fallback, log warning
FK mismatch FK references non-existent ID Generate parents first, validate after
No entity list in GENERATE Empty input Use starter template (User, Role)
Name collision Duplicate class/table names Prefix with feature name
Circular references Self-referencing with cycles Limit depth, validate graph

Reference Files

File Purpose
references/orm_patterns.md ORM auto-detection and schema parsing patterns (Drizzle, Prisma, TypeORM, EF Core, SQLAlchemy, Django)
references/type_mapping.md Universal type mapping (ORM-agnostic → C#, TypeScript, Python) + Faker integration
references/data_generation.md Realistic sample data patterns and generation rules
references/relationship_mapping.md FK handling, generation order, relationship inference

Version: 3.0.0 Last Updated: 2026-02-07