extracting-pdf-text
npx skills add https://github.com/letta-ai/skills --skill extracting-pdf-text
Agent 安装分布
Skill 文档
Extracting PDF Text for LLMs
This skill provides tools and guidance for extracting text from PDFs in formats suitable for language model consumption.
Quick Decision Guide
| PDF Type | Best Approach | Script |
|---|---|---|
| Simple text PDF | PyMuPDF | scripts/extract_pymupdf.py |
| PDF with tables | pdfplumber | scripts/extract_pdfplumber.py |
| Scanned/image PDF (local) | pytesseract | scripts/extract_with_ocr.py |
| Complex layout, highest accuracy | Mistral OCR API | scripts/extract_mistral_ocr.py |
| End-to-end RAG pipeline | marker-pdf | pip install marker-pdf |
Recommended Workflow
- Try PyMuPDF first – fastest, handles most text-based PDFs well
- If tables are mangled – switch to pdfplumber
- If scanned/image-based – use Mistral OCR API (best accuracy) or local OCR (free but slower)
Local Extraction (No API Required)
PyMuPDF – Fast General Extraction
Best for: Text-heavy PDFs, speed-critical workflows, basic structure preservation.
uv run scripts/extract_pymupdf.py input.pdf output.md
The script outputs markdown with preserved headings and paragraphs. For LLM-optimized output, it uses pymupdf4llm which formats text for RAG systems.
pdfplumber – Table Extraction
Best for: PDFs with tables, financial documents, structured data.
uv run scripts/extract_pdfplumber.py input.pdf output.md
Tables are converted to markdown format. Note: pdfplumber works best on machine-generated PDFs, not scanned documents.
Local OCR – Scanned Documents
Best for: Scanned PDFs when API access is unavailable.
uv run scripts/extract_with_ocr.py input.pdf output.txt
Requires: pytesseract, pdf2image, and Tesseract installed (brew install tesseract on macOS).
API-Based Extraction
Mistral OCR API
Best for: Complex layouts, scanned documents, highest accuracy, multilingual content, math formulas.
Pricing: ~1000 pages per dollar (very cost-effective)
export MISTRAL_API_KEY="your-key"
uv run scripts/extract_mistral_ocr.py input.pdf output.md
Features:
- Outputs clean markdown
- Preserves document structure (headings, lists, tables)
- Handles images, math equations, multilingual text
- 95%+ accuracy on complex documents
For detailed API options and other services, see references/api-services.md.
Output Format Recommendations
For LLM consumption, markdown is preferred:
- Preserves semantic structure (headings become context boundaries)
- Tables remain readable
- Compatible with most RAG chunking strategies
For detailed comparisons of local tools, see references/local-tools.md.