hft-quant-expert

📁 kasyap1234/delta-go 📅 Jan 28, 2026
0
总安装量
12
周安装量
安装命令
npx skills add https://github.com/kasyap1234/delta-go --skill hft-quant-expert

Agent 安装分布

claude-code 10
opencode 10
codex 7
gemini-cli 7
trae 6
replit 6

Skill 文档

HFT Quant Expert

Quantitative trading expertise for DeFi and crypto derivatives.

When to Use

  • Building trading strategies and signals
  • Implementing risk management
  • Calculating position sizes
  • Backtesting strategies
  • Analyzing volatility and correlations

Workflow

Step 1: Define Signal

Calculate z-score or other entry signal.

Step 2: Size Position

Use Kelly Criterion (0.25x) for position sizing.

Step 3: Validate Backtest

Check for lookahead bias, survivorship bias, overfitting.

Step 4: Account for Costs

Include gas + slippage in profit calculations.


Quick Formulas

# Z-score
zscore = (value - rolling_mean) / rolling_std

# Sharpe (annualized)
sharpe = np.sqrt(252) * returns.mean() / returns.std()

# Kelly fraction (use 0.25x)
kelly = (win_prob * win_loss_ratio - (1 - win_prob)) / win_loss_ratio

# Half-life of mean reversion
half_life = -np.log(2) / lambda_coef

Common Pitfalls

  • Lookahead bias – Using future data
  • Survivorship bias – Only existing assets
  • Overfitting – Too many parameters
  • Ignoring costs – Gas + slippage
  • Wrong annualization – 252 daily, 365*24 hourly