data-analysis

📁 jinfanzheng/kode-sdk-csharp 📅 Jan 23, 2026
38
总安装量
38
周安装量
#5430
全站排名
安装命令
npx skills add https://github.com/jinfanzheng/kode-sdk-csharp --skill data-analysis

Agent 安装分布

claude-code 27
opencode 27
cursor 25
gemini-cli 23
antigravity 22
codex 22

Skill 文档

Data Analysis – Statistical Computing & Insights

When to use this skill

Activate this skill when:

  • User mentions “数据分析”, “统计”, “计算指标”, “数据洞察”
  • Need to analyze structured data (CSV, JSON, database)
  • Calculate statistics, trends, patterns
  • Financial analysis (returns, volatility, technical indicators)
  • Business analytics (sales, user behavior, KPIs)
  • Scientific data processing and hypothesis testing

Workflow

1. Get data

⚠️ IMPORTANT: File naming requirements

  • File names MUST NOT contain Chinese characters or non-ASCII characters
  • Use only English letters, numbers, underscores, and hyphens
  • Examples: data.csv, sales_report_2025.xlsx, analysis_results.json
  • ❌ Invalid: 销售数据.csv, 数据文件.xlsx, 報表.json
  • This ensures compatibility across different systems and prevents encoding issues

If data already exists:

  • Read from file (CSV, JSON, Excel)
  • Query database if available

If file names contain Chinese characters:

  • Ask the user to rename the file to English/ASCII characters
  • Or rename the file when saving it to the agent directory

If no data:

  • Automatically activate data-base skill
  • Scrape/collect required data
  • Save to structured format

2. Understand requirements

Ask the user:

  • What questions do you want to answer?
  • What metrics are important?
  • What format for results? (summary, chart, report)
  • Any specific statistical methods?

3. Analyze

General analysis:

  • Descriptive statistics (mean, median, std, percentiles)
  • Distribution analysis (histograms, box plots)
  • Correlation analysis
  • Group comparisons

Financial analysis:

  • Return calculation (simple, log, cumulative)
  • Risk metrics (volatility, VaR, Sharpe ratio)
  • Technical indicators (MA, RSI, MACD)
  • Portfolio analysis

Business analysis:

  • Trend analysis (growth rates, YoY, MoM)
  • Cohort analysis
  • Funnel analysis
  • A/B testing

Scientific analysis:

  • Hypothesis testing (t-test, chi-square, ANOVA)
  • Regression analysis
  • Time series analysis
  • Statistical significance

4. Output

Generate results in:

  • Summary statistics: Tables with key metrics
  • Charts: Save as PNG files
  • Report: Markdown with findings
  • Data: Processed CSV/JSON for further use

Python Environment

Auto-initialize virtual environment if needed, then execute:

cd skills/data-analysis

if [ ! -f ".venv/bin/python" ]; then
    echo "Creating Python environment..."
    ./setup.sh
fi

.venv/bin/python your_script.py

The setup script auto-installs: pandas, numpy, scipy, scikit-learn, statsmodels, with Chinese font support.

Analysis scenarios

General data

import pandas as pd

# Load and summarize
df = pd.read_csv('data.csv')
summary = df.describe()
correlations = df.corr()

Financial data

# Calculate returns
df['return'] = df['price'].pct_change()

# Risk metrics
volatility = df['return'].std() * (252 ** 0.5)
sharpe = df['return'].mean() / df['return'].std() * (252 ** 0.5)

Business data

# Group by category
grouped = df.groupby('category').agg({
    'revenue': ['sum', 'mean', 'count']
})

# Growth rate
df['growth'] = df['revenue'].pct_change()

Scientific data

from scipy import stats

# T-test
t_stat, p_value = stats.ttest_ind(group_a, group_b)

# Regression
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X, y)

File path conventions

Temporary output (session-scoped)

Files written to the current directory will be stored in the session directory:

import time
from datetime import datetime

# Use timestamp for unique filenames (avoid conflicts)
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')

# Charts and temporary files
plt.savefig(f'analysis_{timestamp}.png')      # → $KODE_AGENT_DIR/analysis_20250115_143022.png
df.to_csv(f'results_{timestamp}.csv')        # → $KODE_AGENT_DIR/results_20250115_143022.csv

Always use unique filenames to avoid conflicts when running multiple analyses:

  • Use timestamps: analysis_20250115_143022.png
  • Use descriptive names + timestamps: sales_report_q1_2025.csv
  • Use random suffix for scripts: script_{random.randint(1000,9999)}.py

User data (persistent)

Use $KODE_USER_DIR for persistent user data:

import os
user_dir = os.getenv('KODE_USER_DIR')

# Save to user memory
memory_file = f"{user_dir}/.memory/facts/preferences.jsonl"

# Read from knowledge base
knowledge_dir = f"{user_dir}/.knowledge/docs"

Environment variables

  • KODE_AGENT_DIR: Session directory for temporary output (charts, analysis results)
  • KODE_USER_DIR: User data directory for persistent storage (memory, knowledge, config)

Best practices

  • File names MUST be ASCII-only: No Chinese or non-ASCII characters in filenames
  • Always inspect data first: df.head(), df.info(), df.describe()
  • Handle missing values: Drop or impute based on context
  • Check assumptions: Normality, independence, etc.
  • Visualize: Charts reveal patterns tables hide
  • Document findings: Explain metrics and their implications
  • Use correct paths: Temporary outputs to current dir, persistent data to $KODE_USER_DIR

Quick reference

Environment setup

This skill uses Python scripts. To set up the environment:

# Navigate to the skill directory
cd apps/assistant/skills/data-analysis

# Run the setup script (creates venv and installs dependencies)
./setup.sh

# Activate the environment
source .venv/bin/activate

The setup script will:

  • Create a Python virtual environment in .venv/
  • Install required packages (pandas, numpy, scipy, scikit-learn, statsmodels)

To run Python scripts with the skill environment:

# Use the virtual environment's Python
.venv/bin/python script.py

# Or activate first, then run normally
source .venv/bin/activate
python script.py