backtesting-trading-strategies

📁 jeremylongshore/claude-code-plugins-plus-skills 📅 Jan 26, 2026
57
总安装量
57
周安装量
#3840
全站排名
安装命令
npx skills add https://github.com/jeremylongshore/claude-code-plugins-plus-skills --skill backtesting-trading-strategies

Agent 安装分布

claude-code 38
opencode 30
cursor 30
gemini-cli 27
codex 25
antigravity 24

Skill 文档

Backtesting Trading Strategies

Overview

Validate trading strategies against historical data before risking real capital. This skill provides a complete backtesting framework with 8 built-in strategies, comprehensive performance metrics, and parameter optimization.

Key Features:

  • 8 pre-built trading strategies (SMA, EMA, RSI, MACD, Bollinger, Breakout, Mean Reversion, Momentum)
  • Full performance metrics (Sharpe, Sortino, Calmar, VaR, max drawdown)
  • Parameter grid search optimization
  • Equity curve visualization
  • Trade-by-trade analysis

Prerequisites

Install required dependencies:

pip install pandas numpy yfinance matplotlib

Optional for advanced features:

pip install ta-lib scipy scikit-learn

Instructions

Step 1: Fetch Historical Data

python {baseDir}/scripts/fetch_data.py --symbol BTC-USD --period 2y --interval 1d

Data is cached to {baseDir}/data/{symbol}_{interval}.csv for reuse.

Step 2: Run Backtest

Basic backtest with default parameters:

python {baseDir}/scripts/backtest.py --strategy sma_crossover --symbol BTC-USD --period 1y

Advanced backtest with custom parameters:

# Example: backtest with specific date range
python {baseDir}/scripts/backtest.py \
  --strategy rsi_reversal \
  --symbol ETH-USD \
  --period 1y \
  --capital 10000 \
  --params '{"period": 14, "overbought": 70, "oversold": 30}'

Step 3: Analyze Results

Results are saved to {baseDir}/reports/ including:

  • *_summary.txt – Performance metrics
  • *_trades.csv – Trade log
  • *_equity.csv – Equity curve data
  • *_chart.png – Visual equity curve

Step 4: Optimize Parameters

Find optimal parameters via grid search:

python {baseDir}/scripts/optimize.py \
  --strategy sma_crossover \
  --symbol BTC-USD \
  --period 1y \
  --param-grid '{"fast_period": [10, 20, 30], "slow_period": [50, 100, 200]}'

Output

Performance Metrics

Metric Description
Total Return Overall percentage gain/loss
CAGR Compound annual growth rate
Sharpe Ratio Risk-adjusted return (target: >1.5)
Sortino Ratio Downside risk-adjusted return
Calmar Ratio Return divided by max drawdown

Risk Metrics

Metric Description
Max Drawdown Largest peak-to-trough decline
VaR (95%) Value at Risk at 95% confidence
CVaR (95%) Expected loss beyond VaR
Volatility Annualized standard deviation

Trade Statistics

Metric Description
Total Trades Number of round-trip trades
Win Rate Percentage of profitable trades
Profit Factor Gross profit divided by gross loss
Expectancy Expected value per trade

Example Output

================================================================================
                    BACKTEST RESULTS: SMA CROSSOVER
                    BTC-USD | [start_date] to [end_date]
================================================================================
 PERFORMANCE                          | RISK
 Total Return:        +47.32%         | Max Drawdown:      -18.45%
 CAGR:                +47.32%         | VaR (95%):         -2.34%
 Sharpe Ratio:        1.87            | Volatility:        42.1%
 Sortino Ratio:       2.41            | Ulcer Index:       8.2
--------------------------------------------------------------------------------
 TRADE STATISTICS
 Total Trades:        24              | Profit Factor:     2.34
 Win Rate:            58.3%           | Expectancy:        $197.17
 Avg Win:             $892.45         | Max Consec. Losses: 3
================================================================================

Supported Strategies

Strategy Description Key Parameters
sma_crossover Simple moving average crossover fast_period, slow_period
ema_crossover Exponential MA crossover fast_period, slow_period
rsi_reversal RSI overbought/oversold period, overbought, oversold
macd MACD signal line crossover fast, slow, signal
bollinger_bands Mean reversion on bands period, std_dev
breakout Price breakout from range lookback, threshold
mean_reversion Return to moving average period, z_threshold
momentum Rate of change momentum period, threshold

Configuration

Create {baseDir}/config/settings.yaml:

data:
  provider: yfinance
  cache_dir: ./data

backtest:
  default_capital: 10000
  commission: 0.001     # 0.1% per trade
  slippage: 0.0005      # 0.05% slippage

risk:
  max_position_size: 0.95
  stop_loss: null       # Optional fixed stop loss
  take_profit: null     # Optional fixed take profit

Error Handling

See {baseDir}/references/errors.md for common issues and solutions.

Examples

See {baseDir}/references/examples.md for detailed usage examples including:

  • Multi-asset comparison
  • Walk-forward analysis
  • Parameter optimization workflows

Files

File Purpose
scripts/backtest.py Main backtesting engine
scripts/fetch_data.py Historical data fetcher
scripts/strategies.py Strategy definitions
scripts/metrics.py Performance calculations
scripts/optimize.py Parameter optimization

Resources