hugging-face-trackio
67
总安装量
66
周安装量
#3269
全站排名
安装命令
npx skills add https://github.com/huggingface/skills --skill hugging-face-trackio
Agent 安装分布
claude-code
54
opencode
50
gemini-cli
46
codex
42
antigravity
39
github-copilot
34
Skill 文档
Trackio – Experiment Tracking for ML Training
Trackio is an experiment tracking library for logging and visualizing ML training metrics. It syncs to Hugging Face Spaces for real-time monitoring dashboards.
Two Interfaces
| Task | Interface | Reference |
|---|---|---|
| Logging metrics during training | Python API | references/logging_metrics.md |
| Retrieving metrics after/during training | CLI | references/retrieving_metrics.md |
When to Use Each
Python API â Logging
Use import trackio in your training scripts to log metrics:
- Initialize tracking with
trackio.init() - Log metrics with
trackio.log()or use TRL’sreport_to="trackio" - Finalize with
trackio.finish()
Key concept: For remote/cloud training, pass space_id â metrics sync to a Space dashboard so they persist after the instance terminates.
â See references/logging_metrics.md for setup, TRL integration, and configuration options.
CLI â Retrieving
Use the trackio command to query logged metrics:
trackio list projects/runs/metricsâ discover what’s availabletrackio get project/run/metricâ retrieve summaries and valuestrackio showâ launch the dashboardtrackio syncâ sync to HF Space
Key concept: Add --json for programmatic output suitable for automation and LLM agents.
â See references/retrieving_metrics.md for all commands, workflows, and JSON output formats.
Minimal Logging Setup
import trackio
trackio.init(project="my-project", space_id="username/trackio")
trackio.log({"loss": 0.1, "accuracy": 0.9})
trackio.log({"loss": 0.09, "accuracy": 0.91})
trackio.finish()
Minimal Retrieval
trackio list projects --json
trackio get metric --project my-project --run my-run --metric loss --json