hugging-face-trackio

📁 huggingface/skills 📅 Jan 17, 2026
67
总安装量
66
周安装量
#3269
全站排名
安装命令
npx skills add https://github.com/huggingface/skills --skill hugging-face-trackio

Agent 安装分布

claude-code 54
opencode 50
gemini-cli 46
codex 42
antigravity 39
github-copilot 34

Skill 文档

Trackio – Experiment Tracking for ML Training

Trackio is an experiment tracking library for logging and visualizing ML training metrics. It syncs to Hugging Face Spaces for real-time monitoring dashboards.

Two Interfaces

Task Interface Reference
Logging metrics during training Python API references/logging_metrics.md
Retrieving metrics after/during training CLI references/retrieving_metrics.md

When to Use Each

Python API → Logging

Use import trackio in your training scripts to log metrics:

  • Initialize tracking with trackio.init()
  • Log metrics with trackio.log() or use TRL’s report_to="trackio"
  • Finalize with trackio.finish()

Key concept: For remote/cloud training, pass space_id — metrics sync to a Space dashboard so they persist after the instance terminates.

→ See references/logging_metrics.md for setup, TRL integration, and configuration options.

CLI → Retrieving

Use the trackio command to query logged metrics:

  • trackio list projects/runs/metrics — discover what’s available
  • trackio get project/run/metric — retrieve summaries and values
  • trackio show — launch the dashboard
  • trackio sync — sync to HF Space

Key concept: Add --json for programmatic output suitable for automation and LLM agents.

→ See references/retrieving_metrics.md for all commands, workflows, and JSON output formats.

Minimal Logging Setup

import trackio

trackio.init(project="my-project", space_id="username/trackio")
trackio.log({"loss": 0.1, "accuracy": 0.9})
trackio.log({"loss": 0.09, "accuracy": 0.91})
trackio.finish()

Minimal Retrieval

trackio list projects --json
trackio get metric --project my-project --run my-run --metric loss --json