performance-profiling

📁 heshamfs/materials-simulation-skills 📅 10 days ago
1
总安装量
1
周安装量
#44906
全站排名
安装命令
npx skills add https://github.com/heshamfs/materials-simulation-skills --skill performance-profiling

Agent 安装分布

replit 1
windsurf 1
trae 1
kiro-cli 1
codex 1

Skill 文档

Performance Profiling

Goal

Provide tools to analyze simulation performance, identify bottlenecks, and recommend optimization strategies for computational materials science simulations.

Requirements

  • Python 3.8+
  • No external dependencies (uses Python standard library only)
  • Works on Linux, macOS, and Windows

Inputs to Gather

Before running profiling scripts, collect from the user:

Input Description Example
Simulation log Log file with timing information simulation.log
Scaling data JSON with multi-run performance data scaling_data.json
Simulation parameters JSON with mesh, fields, solver config params.json
Available memory System memory in GB (optional) 16.0

Decision Guidance

When to Use Each Script

Need to identify slow phases?
├── YES → Use timing_analyzer.py
│         └── Parse simulation logs for timing data
│
Need to understand parallel performance?
├── YES → Use scaling_analyzer.py
│         └── Analyze strong or weak scaling efficiency
│
Need to estimate memory requirements?
├── YES → Use memory_profiler.py
│         └── Estimate memory from problem parameters
│
Need optimization recommendations?
└── YES → Use bottleneck_detector.py
          └── Combine analyses and get actionable advice

Choosing Analysis Thresholds

Metric Good Acceptable Poor
Phase dominance <30% 30-50% >50%
Parallel efficiency >0.80 0.70-0.80 <0.70
Memory usage <60% 60-80% >80%

Script Outputs (JSON Fields)

Script Key Outputs
timing_analyzer.py timing_data.phases, timing_data.slowest_phase, timing_data.total_time
scaling_analyzer.py scaling_analysis.results, scaling_analysis.efficiency_threshold_processors
memory_profiler.py memory_profile.total_memory_gb, memory_profile.per_process_gb, memory_profile.warnings
bottleneck_detector.py bottlenecks, recommendations

Workflow

Complete Profiling Workflow

  1. Analyze timing from simulation logs
  2. Analyze scaling from multi-run data (if available)
  3. Profile memory from simulation parameters
  4. Detect bottlenecks and get recommendations
  5. Implement optimizations based on recommendations
  6. Re-profile to verify improvements

Quick Profiling (Timing Only)

  1. Run timing analyzer on simulation log
  2. Identify dominant phases (>50% of runtime)
  3. Apply targeted optimizations to dominant phases

CLI Examples

Timing Analysis

# Basic timing analysis
python3 scripts/timing_analyzer.py \
    --log simulation.log \
    --json

# Custom timing pattern
python3 scripts/timing_analyzer.py \
    --log simulation.log \
    --pattern 'Step\s+(\w+)\s+took\s+([\d.]+)s' \
    --json

Scaling Analysis

# Strong scaling (fixed problem size)
python3 scripts/scaling_analyzer.py \
    --data scaling_data.json \
    --type strong \
    --json

# Weak scaling (constant work per processor)
python3 scripts/scaling_analyzer.py \
    --data scaling_data.json \
    --type weak \
    --json

Memory Profiling

# Estimate memory requirements
python3 scripts/memory_profiler.py \
    --params simulation_params.json \
    --available-gb 16.0 \
    --json

Bottleneck Detection

# Detect bottlenecks from timing only
python3 scripts/bottleneck_detector.py \
    --timing timing_results.json \
    --json

# Comprehensive analysis with all inputs
python3 scripts/bottleneck_detector.py \
    --timing timing_results.json \
    --scaling scaling_results.json \
    --memory memory_results.json \
    --json

Conversational Workflow Example

User: My simulation is taking too long. Can you help me identify what’s slow?

Agent workflow:

  1. Ask for simulation log file
  2. Run timing analyzer:
    python3 scripts/timing_analyzer.py --log simulation.log --json
    
  3. Interpret results:
    • If solver dominates (>50%): Recommend preconditioner tuning
    • If assembly dominates: Recommend caching or vectorization
    • If I/O dominates: Recommend reducing output frequency
  4. If user has multi-run data, analyze scaling:
    python3 scripts/scaling_analyzer.py --data scaling.json --type strong --json
    
  5. Generate comprehensive recommendations:
    python3 scripts/bottleneck_detector.py --timing timing.json --scaling scaling.json --json
    

Interpretation Guidance

Timing Analysis

Scenario Meaning Action
Solver >70% Solver-dominated Tune preconditioner, check tolerance
Assembly >50% Assembly-dominated Cache matrices, vectorize, parallelize
I/O >30% I/O-dominated Reduce frequency, use parallel I/O
Balanced (<30% each) Well-balanced Look for algorithmic improvements

Scaling Analysis

Efficiency Meaning Action
>0.80 Excellent scaling Continue scaling up
0.70-0.80 Good scaling Monitor at larger scales
0.50-0.70 Poor scaling Investigate communication/load balance
<0.50 Very poor scaling Reduce processor count or redesign

Memory Profile

Usage Meaning Action
<60% available Safe No action needed
60-80% available Moderate Monitor, consider optimization
>80% available High Reduce resolution or increase processors
>100% available Exceeds capacity Must reduce problem size

Error Handling

Error Cause Resolution
Log file not found Invalid path Verify log file path
No timing data found Pattern mismatch Provide custom pattern with –pattern
At least 2 runs required Insufficient data Provide more scaling runs
Missing required parameters Incomplete params Add mesh and fields to params file

Optimization Strategies by Bottleneck Type

Solver Bottlenecks

  • Use algebraic multigrid (AMG) preconditioner
  • Tighten solver tolerance if over-solving
  • Consider direct solver for small problems
  • Profile matrix assembly vs solve time

Assembly Bottlenecks

  • Cache element matrices if geometry is static
  • Use vectorized assembly routines
  • Consider matrix-free methods
  • Parallelize assembly with coloring

I/O Bottlenecks

  • Reduce output frequency
  • Use parallel I/O (HDF5, MPI-IO)
  • Write to fast scratch storage
  • Compress output data

Scaling Bottlenecks

  • Investigate communication overhead
  • Check for load imbalance
  • Reduce synchronization points
  • Use asynchronous communication
  • Consider hybrid MPI+OpenMP

Memory Bottlenecks

  • Reduce mesh resolution
  • Use iterative solver (lower memory than direct)
  • Enable out-of-core computation
  • Increase number of processors
  • Use single precision where appropriate

Limitations

  • Log parsing: Depends on pattern matching; may miss unusual formats
  • Scaling analysis: Requires at least 2 runs for meaningful results
  • Memory estimation: Approximate; actual usage may vary
  • Recommendations: General guidance; may need domain-specific tuning

References

  • references/profiling_guide.md – Profiling concepts and interpretation
  • references/optimization_strategies.md – Detailed optimization approaches

Version History

  • v1.0.0 (2025-01-22): Initial release with 4 profiling scripts