spring-boot-resilience4j
npx skills add https://github.com/giuseppe-trisciuoglio/developer-kit --skill spring-boot-resilience4j
Agent 安装分布
Skill 文档
Spring Boot Resilience4j Patterns
Overview
Resilience4j is a lightweight fault tolerance library designed for Java 8+ and functional programming. It provides patterns for handling failures in distributed systems including circuit breakers, rate limiters, retry mechanisms, bulkheads, and time limiters. This skill demonstrates how to integrate Resilience4j with Spring Boot 3.x to build resilient microservices that can gracefully handle external service failures and prevent cascading failures across the system.
When to Use
To implement resilience patterns in Spring Boot applications, use this skill when:
- Preventing cascading failures from external service unavailability with circuit breaker pattern
- Retrying transient failures with exponential backoff
- Rate limiting to protect services from overload or downstream service capacity constraints
- Isolating resources with bulkhead pattern to prevent thread pool exhaustion
- Adding timeout controls to async operations with time limiter
- Combining multiple patterns for comprehensive fault tolerance
Resilience4j is a lightweight, composable library for adding fault tolerance without requiring external infrastructure. It provides annotation-based patterns that integrate seamlessly with Spring Boot’s AOP and Actuator.
Instructions
1. Setup and Dependencies
Add Resilience4j dependencies to your project. For Maven, add to pom.xml:
<dependency>
<groupId>io.github.resilience4j</groupId>
<artifactId>resilience4j-spring-boot3</artifactId>
<version>2.2.0</version> // Use latest stable version
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-aop</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
For Gradle, add to build.gradle:
implementation "io.github.resilience4j:resilience4j-spring-boot3:2.2.0"
implementation "org.springframework.boot:spring-boot-starter-aop"
implementation "org.springframework.boot:spring-boot-starter-actuator"
Enable AOP annotation processing with @EnableAspectJAutoProxy (auto-configured by Spring Boot).
2. Circuit Breaker Pattern
Apply @CircuitBreaker annotation to methods calling external services:
@Service
public class PaymentService {
private final RestTemplate restTemplate;
public PaymentService(RestTemplate restTemplate) {
this.restTemplate = restTemplate;
}
@CircuitBreaker(name = "paymentService", fallbackMethod = "paymentFallback")
public PaymentResponse processPayment(PaymentRequest request) {
return restTemplate.postForObject("http://payment-api/process",
request, PaymentResponse.class);
}
private PaymentResponse paymentFallback(PaymentRequest request, Exception ex) {
return PaymentResponse.builder()
.status("PENDING")
.message("Service temporarily unavailable")
.build();
}
}
Configure in application.yml:
resilience4j:
circuitbreaker:
configs:
default:
registerHealthIndicator: true
slidingWindowSize: 10
minimumNumberOfCalls: 5
failureRateThreshold: 50
waitDurationInOpenState: 10s
instances:
paymentService:
baseConfig: default
See @references/configuration-reference.md for complete circuit breaker configuration options.
3. Retry Pattern
Apply @Retry annotation for transient failure recovery:
@Service
public class ProductService {
private final RestTemplate restTemplate;
public ProductService(RestTemplate restTemplate) {
this.restTemplate = restTemplate;
}
@Retry(name = "productService", fallbackMethod = "getProductFallback")
public Product getProduct(Long productId) {
return restTemplate.getForObject(
"http://product-api/products/" + productId,
Product.class);
}
private Product getProductFallback(Long productId, Exception ex) {
return Product.builder()
.id(productId)
.name("Unavailable")
.available(false)
.build();
}
}
Configure retry in application.yml:
resilience4j:
retry:
configs:
default:
maxAttempts: 3
waitDuration: 500ms
enableExponentialBackoff: true
exponentialBackoffMultiplier: 2
instances:
productService:
baseConfig: default
maxAttempts: 5
See @references/configuration-reference.md for retry exception configuration.
4. Rate Limiter Pattern
Apply @RateLimiter to control request rates:
@Service
public class NotificationService {
private final EmailClient emailClient;
public NotificationService(EmailClient emailClient) {
this.emailClient = emailClient;
}
@RateLimiter(name = "notificationService",
fallbackMethod = "rateLimitFallback")
public void sendEmail(EmailRequest request) {
emailClient.send(request);
}
private void rateLimitFallback(EmailRequest request, Exception ex) {
throw new RateLimitExceededException(
"Too many requests. Please try again later.");
}
}
Configure in application.yml:
resilience4j:
ratelimiter:
configs:
default:
registerHealthIndicator: true
limitForPeriod: 10
limitRefreshPeriod: 1s
timeoutDuration: 500ms
instances:
notificationService:
baseConfig: default
limitForPeriod: 5
5. Bulkhead Pattern
Apply @Bulkhead to isolate resources. Use type = SEMAPHORE for synchronous methods:
@Service
public class ReportService {
private final ReportGenerator reportGenerator;
public ReportService(ReportGenerator reportGenerator) {
this.reportGenerator = reportGenerator;
}
@Bulkhead(name = "reportService", type = Bulkhead.Type.SEMAPHORE)
public Report generateReport(ReportRequest request) {
return reportGenerator.generate(request);
}
}
Use type = THREADPOOL for async/CompletableFuture methods:
@Service
public class AnalyticsService {
@Bulkhead(name = "analyticsService", type = Bulkhead.Type.THREADPOOL)
public CompletableFuture<AnalyticsResult> runAnalytics(
AnalyticsRequest request) {
return CompletableFuture.supplyAsync(() ->
analyticsEngine.analyze(request));
}
}
Configure in application.yml:
resilience4j:
bulkhead:
configs:
default:
maxConcurrentCalls: 10
maxWaitDuration: 100ms
instances:
reportService:
baseConfig: default
maxConcurrentCalls: 5
thread-pool-bulkhead:
instances:
analyticsService:
maxThreadPoolSize: 8
6. Time Limiter Pattern
Apply @TimeLimiter to async methods to enforce timeout boundaries:
@Service
public class SearchService {
@TimeLimiter(name = "searchService", fallbackMethod = "searchFallback")
public CompletableFuture<SearchResults> search(SearchQuery query) {
return CompletableFuture.supplyAsync(() ->
searchEngine.executeSearch(query));
}
private CompletableFuture<SearchResults> searchFallback(
SearchQuery query, Exception ex) {
return CompletableFuture.completedFuture(
SearchResults.empty("Search timed out"));
}
}
Configure in application.yml:
resilience4j:
timelimiter:
configs:
default:
timeoutDuration: 2s
cancelRunningFuture: true
instances:
searchService:
baseConfig: default
timeoutDuration: 3s
7. Combining Multiple Patterns
Stack multiple patterns on a single method for comprehensive fault tolerance:
@Service
public class OrderService {
@CircuitBreaker(name = "orderService")
@Retry(name = "orderService")
@RateLimiter(name = "orderService")
@Bulkhead(name = "orderService")
public Order createOrder(OrderRequest request) {
return orderClient.createOrder(request);
}
}
Execution order: Retry â CircuitBreaker â RateLimiter â Bulkhead â Method
All patterns should reference the same named configuration instance for consistency.
8. Exception Handling and Monitoring
Create a global exception handler using @RestControllerAdvice:
@RestControllerAdvice
public class ResilienceExceptionHandler {
@ExceptionHandler(CallNotPermittedException.class)
@ResponseStatus(HttpStatus.SERVICE_UNAVAILABLE)
public ErrorResponse handleCircuitOpen(CallNotPermittedException ex) {
return new ErrorResponse("SERVICE_UNAVAILABLE",
"Service currently unavailable");
}
@ExceptionHandler(RequestNotPermitted.class)
@ResponseStatus(HttpStatus.TOO_MANY_REQUESTS)
public ErrorResponse handleRateLimited(RequestNotPermitted ex) {
return new ErrorResponse("TOO_MANY_REQUESTS",
"Rate limit exceeded");
}
@ExceptionHandler(BulkheadFullException.class)
@ResponseStatus(HttpStatus.SERVICE_UNAVAILABLE)
public ErrorResponse handleBulkheadFull(BulkheadFullException ex) {
return new ErrorResponse("CAPACITY_EXCEEDED",
"Service at capacity");
}
}
Enable Actuator endpoints for monitoring resilience patterns in application.yml:
management:
endpoints:
web:
exposure:
include: health,metrics,circuitbreakers,retries,ratelimiters
endpoint:
health:
show-details: always
health:
circuitbreakers:
enabled: true
ratelimiters:
enabled: true
Access monitoring endpoints:
GET /actuator/health– Overall health including resilience patternsGET /actuator/circuitbreakers– Circuit breaker statesGET /actuator/metrics– Custom resilience metrics
Best Practices
- Always provide fallback methods: Ensure graceful degradation with meaningful responses rather than exceptions
- Use exponential backoff for retries: Prevent overwhelming recovering services with aggressive backoff (
exponentialBackoffMultiplier: 2) - Choose appropriate failure thresholds: Set
failureRateThresholdbetween 50-70% depending on acceptable error rates - Use constructor injection exclusively: Never use field injection for Resilience4j dependencies
- Enable health indicators: Set
registerHealthIndicator: truefor all patterns to integrate with Spring Boot health - Separate failure vs. client errors: Retry only transient errors (network timeouts, 5xx); skip 4xx and business exceptions
- Size bulkheads based on load: Calculate thread pool and semaphore sizes from expected concurrent load and latency
- Monitor and adjust: Continuously review metrics and adjust timeouts/thresholds based on production behavior
- Document fallback behavior: Make fallback logic clear and predictable to users and maintainers
Constraints and Warnings
- Fallback methods must have the same signature as the original method plus an optional exception parameter.
- Circuit breaker state is maintained per-instance; ensure proper bean scoping in multi-tenant scenarios.
- Retry operations should be idempotent as they may execute multiple times.
- Do not use circuit breakers for operations that must always complete; use appropriate timeouts instead.
- Rate limiters can cause thread blocking; configure appropriate wait durations.
- Bulkhead isolation may lead to rejected requests under load; ensure proper fallback handling.
- Be cautious with
@Retryon non-idempotent operations like POST requests. - Monitor memory usage when using thread pool bulkheads with high concurrency settings.
Examples
Input: External Service Call Without Resilience
@Service
public class PaymentService {
public PaymentResponse processPayment(PaymentRequest request) {
return restTemplate.postForObject("http://payment-api/process",
request, PaymentResponse.class);
}
}
Output: Circuit Breaker Protected Service
@Service
public class PaymentService {
@CircuitBreaker(name = "paymentService", fallbackMethod = "paymentFallback")
public PaymentResponse processPayment(PaymentRequest request) {
return restTemplate.postForObject("http://payment-api/process",
request, PaymentResponse.class);
}
private PaymentResponse paymentFallback(PaymentRequest request, Exception ex) {
return PaymentResponse.builder()
.status("PENDING")
.message("Service temporarily unavailable")
.build();
}
}
Input: Service Without Retry
public Order getOrder(Long orderId) {
return orderRepository.findById(orderId)
.orElseThrow(() -> new OrderNotFoundException(orderId));
}
Output: Retry with Exponential Backoff
@Retry(name = "orderService", fallbackMethod = "getOrderFallback")
public Order getOrder(Long orderId) {
return orderRepository.findById(orderId)
.orElseThrow(() -> new OrderNotFoundException(orderId));
}
private Order getOrderFallback(Long orderId, Exception ex) {
return Order.cachedOrder(orderId);
}
Input: Unbounded Rate
@RestController
public class ApiController {
@GetMapping("/api/data")
public Data fetchData() {
return dataService.processLargeDataset();
}
}
Output: Rate Limited Endpoint
@RestController
public class ApiController {
@RateLimiter(name = "dataService", fallbackMethod = "rateLimitFallback")
@GetMapping("/api/data")
public Data fetchData() {
return dataService.processLargeDataset();
}
private ResponseEntity<ErrorResponse> rateLimitFallback(Exception ex) {
return ResponseEntity.status(429)
.body(new ErrorResponse("TOO_MANY_REQUESTS", "Rate limit exceeded"));
}
}
Input: Blocking Thread Pool Operation
@Service
public class ReportService {
public Report generateReport(ReportRequest request) {
return reportGenerator.generate(request);
}
}
Output: Bulkhead Protected Service
@Service
public class ReportService {
@Bulkhead(name = "reportService", type = Bulkhead.Type.SEMAPHORE)
public Report generateReport(ReportRequest request) {
return reportGenerator.generate(request);
}
}
- Complete property reference and configuration patterns
- Unit and integration testing strategies
- Real-world e-commerce service example using all patterns
- Resilience4j Documentation
- Spring Boot Actuator Skill – Monitoring resilience patterns with Actuator