spring-boot-cache

📁 giuseppe-trisciuoglio/developer-kit 📅 10 days ago
100
总安装量
100
周安装量
#2287
全站排名
安装命令
npx skills add https://github.com/giuseppe-trisciuoglio/developer-kit --skill spring-boot-cache

Agent 安装分布

claude-code 71
replit 65
cursor 65
opencode 60
antigravity 56

Skill 文档

Spring Boot Cache Abstraction

Overview

Spring Boot ships with a cache abstraction that wraps expensive service calls behind annotation-driven caches. This abstraction supports multiple cache providers (ConcurrentMap, Caffeine, Redis, Ehcache, JCache) without changing business code. The skill provides a concise workflow for enabling caching, managing cache lifecycles, and validating behavior in Spring Boot 3.5+ services.

When to Use

  • Add @Cacheable, @CachePut, or @CacheEvict to Spring Boot service methods.
  • Configure Caffeine, Redis, or JCache cache managers for Spring Boot.
  • Diagnose cache invalidation, eviction scheduling, or cache key issues.
  • Expose cache management endpoints or scheduled eviction routines.

Use trigger phrases such as “implement service caching”, “configure CaffeineCacheManager”, “evict caches on update”, or “test Spring cache behavior” to load this skill.

Instructions

Follow these steps to implement caching in Spring Boot applications:

1. Add Cache Dependencies

Include spring-boot-starter-cache and your preferred cache provider (Caffeine, Redis, Ehcache) in the project dependencies.

2. Enable Caching

Add @EnableCaching to a @Configuration class and declare CacheManager bean(s) for your cache providers.

3. Define Cache Configuration

Configure cache names, TTL settings, and capacity limits in application.yml or via CacheManager customizer beans.

4. Anotate Service Methods

Apply @Cacheable for read operations, @CachePut for updates, and @CacheEvict for invalidation. Use @CacheConfig to define default cache names at class level.

5. Configure Cache Keys and Conditions

Use SpEL expressions to define cache keys (key = “#user.id”), conditions (condition = “#price > 0”), and unless clauses (unless = “#result == null”).

6. Implement Cache Eviction Strategy

Create scheduled jobs or use @CacheEvict with allEntries=true to periodically clear time-sensitive caches.

7. Monitor Cache Performance

Enable Actuator cache endpoint to observe hit/miss ratios. Consider Micrometer metrics for production observability.

Prerequisites

  • Java 17+ project based on Spring Boot 3.5.x (records encouraged for DTOs).
  • Dependency spring-boot-starter-cache; add provider-specific starters as needed (spring-boot-starter-data-redis, caffeine, ehcache, etc.).
  • Constructor-injected services that expose deterministic method signatures.
  • Observability stack (Actuator, Micrometer) when operating caches in production.

Quick Start

  1. Add dependencies

    <!-- Maven -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-cache</artifactId>
    </dependency>
    <dependency> <!-- Optional: Caffeine -->
        <groupId>com.github.ben-manes.caffeine</groupId>
        <artifactId>caffeine</artifactId>
    </dependency>
    
    implementation "org.springframework.boot:spring-boot-starter-cache"
    implementation "com.github.ben-manes.caffeine:caffeine"
    
  2. Enable caching

    @Configuration
    @EnableCaching
    class CacheConfig {
        @Bean
        CacheManager cacheManager() {
            return new CaffeineCacheManager("users", "orders");
        }
    }
    
  3. Annotate service methods

    @Service
    @CacheConfig(cacheNames = "users")
    class UserService {
    
        @Cacheable(key = "#id", unless = "#result == null")
        User findUser(Long id) { ... }
    
        @CachePut(key = "#user.id")
        User refreshUser(User user) { ... }
    
        @CacheEvict(key = "#id", beforeInvocation = false)
        void deleteUser(Long id) { ... }
    }
    
  4. Verify behavior

    • Run focused unit tests that call cached methods twice and assert repository invocations.
    • Inspect Actuator cache endpoint (if enabled) for hit/miss counters.

Implementation Workflow

1. Define Cache Strategy

  • Map hot-path read operations to @Cacheable.
  • Use @CachePut on write paths that must refresh cache entries.
  • Apply @CacheEvict (allEntries = true when invalidating derived caches).
  • Combine operations with @Caching to keep multi-cache updates consistent.

2. Shape Cache Keys and Conditions

  • Generate deterministic keys via SpEL (e.g. key = "#user.id").
  • Guard caching with condition = "#price > 0" for selective caching.
  • Prevent null or stale values with unless = "#result == null".
  • Synchronize concurrent updates via sync = true when needed.

3. Manage Providers and TTLs

  • Configure provider-specific options:
    • Caffeine spec: spring.cache.caffeine.spec=maximumSize=500,expireAfterWrite=10m
    • Redis TTL: spring.cache.redis.time-to-live=600000
    • Ehcache XML: define ttl and heap/off-heap resources.
  • Expose cache names via spring.cache.cache-names=users,orders,catalog.
  • Avoid on-demand cache name creation in production unless metrics cover usage.

4. Operate and Observe Caches

  • Surface cache maintenance via a dedicated CacheManagementService with programmatic cacheManager.getCache(name) access.
  • Schedule periodic eviction for time-bound caches using @Scheduled.
  • Wire Actuator cache endpoint and Micrometer meters to track hit ratio, eviction count, and size.

5. Test and Validate

  • Prefer slice or unit tests with Mockito/SpyBean to ensure method invocation counts.
  • Add integration tests with Testcontainers for Redis/Ehcache when using external providers.
  • Validate concurrency behavior under load (e.g. sync = true scenarios).

Advanced Options

  • Integrate JCache annotations when interoperating with providers that favor JSR-107 (@CacheResult, @CacheRemove). Avoid mixing with Spring annotations on the same method.
  • Cache reactive return types (Mono, Flux) or CompletableFuture values. Spring stores resolved values and resubscribes on hits; consider TTL alignment with publisher semantics.
  • Apply HTTP caching headers using CacheControl when exposing cached responses via REST.

Examples

Example 1: Basic @Cacheable Usage

Input:

// First call - cache miss, method executes
User user1 = userService.findUser(1L);

// Second call - cache hit, method skipped
User user2 = userService.findUser(1L);

Output:

// First call logs:
Hibernate: select u1_0.id,u1_0.name from users u1_0 where u1_0.id=?

// Second call: No SQL executed (served from cache)

Example 2: Conditional Caching with SpEL

Input:

@Cacheable(value = "products", key = "#id", condition = "#price > 100")
public Product getProduct(Long id, BigDecimal price) {
    return productRepository.findById(id);
}

// Only expensive products are cached
getProduct(1L, new BigDecimal("50.00"));   // Not cached
getProduct(2L, new BigDecimal("150.00"));  // Cached

Output:

Cache 'products' contents after operations:
{2=Product(id=2, price=150.00)}

Example 3: Cache Eviction

Input:

@CacheEvict(value = "users", key = "#id")
public void deleteUser(Long id) {
    userRepository.deleteById(id);
}

deleteUser(1L);

Output:

Cache 'users' entry for key '1' removed

References

Best Practices

  • Prefer constructor injection and immutable DTOs for cache entries.
  • Separate cache names per aggregate (users, orders) to simplify eviction.
  • Log cache hits/misses only at debug to avoid noise; push metrics via Micrometer.
  • Tune TTLs based on data staleness tolerance; document rationale in code.
  • Guard caches that store PII or credentials with encryption or avoid caching.
  • Align cache eviction with transactional boundaries to prevent dirty reads.

Constraints and Warnings

  • Avoid caching mutable entities that depend on open persistence contexts.
  • Do not mix Spring cache annotations with JCache annotations on the same method.
  • Ensure multi-level caches (e.g. Caffeine + Redis) maintain consistency; prefer publish/subscribe invalidation channels.
  • Validate serialization compatibility when caching across service instances.
  • Monitor memory footprint to prevent OOM when using in-memory stores.

Related Skills