langchain4j-ai-services-patterns
npx skills add https://github.com/giuseppe-trisciuoglio/developer-kit --skill langchain4j-ai-services-patterns
Agent 安装分布
Skill 文档
LangChain4j AI Services Patterns
This skill provides guidance for building declarative AI Services with LangChain4j using interface-based patterns, annotations for system and user messages, memory management, tools integration, and advanced AI application patterns that abstract away low-level LLM interactions.
When to Use
Use this skill when:
- Building declarative AI-powered interfaces with minimal boilerplate code
- Creating type-safe AI services with Java interfaces and annotations
- Implementing conversational AI systems with memory management
- Designing AI services that can call external tools and functions
- Building multi-agent systems with specialized AI components
- Creating AI services with different personas and behaviors
- Implementing RAG (Retrieval-Augmented Generation) patterns declaratively
- Building production AI applications with proper error handling and validation
- Creating AI services that return structured data types (enums, POJOs, lists)
- Implementing streaming AI responses with reactive patterns
Overview
LangChain4j AI Services allow you to define AI-powered functionality using plain Java interfaces with annotations, eliminating the need for manual prompt construction and response parsing. This pattern provides type-safe, declarative AI capabilities with minimal boilerplate code.
Instructions
Follow these steps to create declarative AI Services with LangChain4j:
1. Define AI Service Interface
Create a Java interface with method signatures for AI interactions:
public interface Assistant {
String chat(String userMessage);
}
2. Add Annotations for Messages
Use @SystemMessage and @UserMessage annotations to define prompts:
public interface CustomerSupportBot {
@SystemMessage("You are a helpful customer support agent for TechCorp")
String handleInquiry(String customerMessage);
@UserMessage("Analyze sentiment: {{it}}")
Sentiment analyzeSentiment(String feedback);
}
3. Create AI Service Instance
Use AiServices builder to create implementation:
Assistant assistant = AiServices.builder(Assistant.class)
.chatModel(chatModel)
.build();
4. Configure Memory for Conversations
Add memory management for multi-turn conversations:
interface MultiUserAssistant {
String chat(@MemoryId String userId, String userMessage);
}
Assistant assistant = AiServices.builder(MultiUserAssistant.class)
.chatModel(model)
.chatMemoryProvider(userId -> MessageWindowChatMemory.withMaxMessages(10))
.build();
5. Integrate Tools for Function Calling
Register tools to enable AI to execute external functions:
class Calculator {
@Tool("Add two numbers") double add(double a, double b) { return a + b; }
}
MathGenius mathGenius = AiServices.builder(MathGenius.class)
.chatModel(model)
.tools(new Calculator())
.build();
Quick Start
Basic AI Service Definition
interface Assistant {
String chat(String userMessage);
}
// Create instance - LangChain4j generates implementation
Assistant assistant = AiServices.create(Assistant.class, chatModel);
// Use the service
String response = assistant.chat("Hello, how are you?");
System Message and Templates
interface CustomerSupportBot {
@SystemMessage("You are a helpful customer support agent for TechCorp")
String handleInquiry(String customerMessage);
@UserMessage("Analyze sentiment: {{it}}")
String analyzeSentiment(String feedback);
}
CustomerSupportBot bot = AiServices.create(CustomerSupportBot.class, chatModel);
Memory Management
interface MultiUserAssistant {
String chat(@MemoryId String userId, String userMessage);
}
Assistant assistant = AiServices.builder(MultiUserAssistant.class)
.chatModel(model)
.chatMemoryProvider(userId -> MessageWindowChatMemory.withMaxMessages(10))
.build();
Tool Integration
class Calculator {
@Tool("Add two numbers") double add(double a, double b) { return a + b; }
}
interface MathGenius {
String ask(String question);
}
MathGenius mathGenius = AiServices.builder(MathGenius.class)
.chatModel(model)
.tools(new Calculator())
.build();
Examples
See examples.md for comprehensive practical examples including:
- Basic chat interfaces
- Stateful assistants with memory
- Multi-user scenarios
- Structured output extraction
- Tool calling and function execution
- Streaming responses
- Error handling
- RAG integration
- Production patterns
API Reference
Complete API documentation, annotations, interfaces, and configuration patterns are available in references.md.
Best Practices
- Use type-safe interfaces instead of string-based prompts
- Implement proper memory management with appropriate limits
- Design clear tool descriptions with parameter documentation
- Handle errors gracefully with custom error handlers
- Use structured output for predictable responses
- Implement validation for user inputs
- Monitor performance for production deployments
Dependencies
<!-- Maven -->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j</artifactId>
<version>1.8.0</version>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai</artifactId>
<version>1.8.0</version>
</dependency>
// Gradle
implementation 'dev.langchain4j:langchain4j:1.8.0'
implementation 'dev.langchain4j:langchain4j-open-ai:1.8.0'
References
- LangChain4j Documentation
- LangChain4j AI Services – API References
- LangChain4j AI Services – Practical Examples
Constraints and Warnings
- AI Services rely on LLM responses which are non-deterministic; tests should account for variability.
- Memory providers store conversation history; ensure proper cleanup for multi-user scenarios.
- Tool execution can be expensive; implement rate limiting and timeout handling.
- Never pass sensitive data (API keys, passwords) in system or user messages.
- Large context windows can lead to high token costs; implement message pruning strategies.
- Streaming responses require proper error handling for partial failures.
- AI-generated outputs should be validated before use in production systems.
- Be cautious with tools that have side effects; AI models may call them unexpectedly.
- Token limits vary by model; ensure prompts and context fit within model constraints.