scikit-learn
1
总安装量
1
周安装量
#52783
全站排名
安装命令
npx skills add https://github.com/g1joshi/agent-skills --skill scikit-learn
Agent 安装分布
mcpjam
1
claude-code
1
replit
1
junie
1
zencoder
1
Skill 文档
Scikit-learn
Scikit-learn is the gold standard for “Classical ML” (Regression, SVM, Random Forest). v1.6 (2025) adds Array API support (running on GPUs via PyTorch/CuPy).
When to Use
- Tabular Data: Random Forests / Gradient Boosting.
- Preprocessing:
StandardScaler,LabelEncoder. - Small Data: When Deep Learning is overkill.
Core Concepts
Estimators
Everything implements .fit(X, y) and .predict(X).
Pipelines
Chaining preprocessing and modeling: Pipeline([('scaler', StandardScaler()), ('svc', SVC())]).
Array API
Passing PyTorch tensors directly to Scikit-learn without converting to NumPy (keeping data on GPU).
Best Practices (2025)
Do:
- Use Pipelines: Prevent data leakage during cross-validation.
- Use
HistGradientBoostingClassifier: It is much faster than standard extraction implementation (inspired by LightGBM).
Don’t:
- Don’t use for Images/Audio: Use PyTorch/DL for unstructured data.