jax
1
总安装量
1
周安装量
#46457
全站排名
安装命令
npx skills add https://github.com/g1joshi/agent-skills --skill jax
Agent 安装分布
mcpjam
1
claude-code
1
replit
1
junie
1
zencoder
1
Skill 文档
JAX
JAX is “NumPy on steroids”. It combines Autograd (automatic differentiation) with XLA (compilation). 2025 sees Flax NNX (PyTorch-style OOP) becoming standard.
When to Use
- TPU Training: JAX runs natively on Google TPUs.
- Research: If you need to compute 10th order derivatives or strange math.
- Massive Scale: DeepMind and OpenAI use JAX for training frontier models.
Core Concepts
Functional Transformations
grad(), jit(), vmap(), pmap().
Flax (NNX)
Neural network library. NNX introduces mutable state (OOP) to make JAX feel like PyTorch.
Statelessness
(Legacy Flax) parameters are stored separately from the model.
Best Practices (2025)
Do:
- Use
jit: Always compile your functions. - Use Flax NNX: Avoid the complexity of legacy immutable Flax/Haiku.
- Use
shard_map: For distributed training across devices.
Don’t:
- Don’t use side effects:
print()inside ajitfunction only runs once (during tracing).