x-algo-post
1
总安装量
1
周安装量
#48274
全站排名
安装命令
npx skills add https://github.com/felixondesk/agent-skills --skill x-algo-post
Agent 安装分布
opencode
1
codex
1
claude-code
1
Skill 文档
X Algorithm Mastery
ð Create Viral X Content Using the Official Open-Sourced Algorithm
Built from the official open-sourced algorithm at github.com/xai-org/x-algorithm
Every recommendation traces directly to X’s open-sourced recommendation algorithm codebase.
Features ⢠Installation ⢠Usage ⢠How It Works ⢠Examples
⨠Features
- ð¯ Multi-Action Prediction – 15 algorithm signals with actual impact weights
- ð Network Bridge Framework – Convert out-of-network viewers to followers
- 𧬠Author Identity Building – Strengthen your topical embedding via two-tower retrieval
- ð Compound Patterns – Signal cascades > single-signal optimization
- â ï¸ Anti-Pattern Detection – Proactive root cause analysis, not reactive fixes
- ð Official Documentation – Based directly on https://github.com/xai-org/x-algorithm
ð Why This Is Different
| Feature | Generic Advice | This Skill |
|---|---|---|
| Source | Opinions & guesses | Official xai-org codebase |
| Signals | Vague “engagement” | 15 documented predictions |
| Retrieval | Not mentioned | Two-tower model explained |
| Network Strategy | Missing | OON â in-network framework |
| Author Embedding | Not addressed | Candidate tower strategy |
| Pipeline | Unknown | 7 documented stages |
ð¥ Installation
Automatic Installation
npx skills add https://github.com/felixondesk/agent-skills --skill x-algo-post
Manual Installation
# Create the skill directory
mkdir -p ~/.claude/skills/x-algo-post
# Copy the skill files
# SKILL.md, .openskills.json, README.md, LICENSE.txt
Verify Installation
ls ~/.claude/skills/x-algo-post/
# Should show: SKILL.md, .openskills.json, README.md, LICENSE.txt
ð¯ Usage
Basic Draft Review
Review this X post:
I built a SaaS that failed in 3 months. Here's what I learned:
1. I focused on features, not problems
2. I talked to users, but didn't listen
3. I optimized for metrics that didn't matter
The biggest lesson? Speed of learning > everything else.
Viral Potential Analysis
Will this go viral?
The #1 product at Amazon isn't what you think.
Not AWS. Not Prime. Not Alexa.
It's the internal document culture.
Every major decision starts with a 6-page narrative memo.
That's why they move fastâeveryone actually understands the decision.
Content Optimization
Optimize this for maximum reach:
"Check out my new thread about productivity tips!"
Strategy Session
I'm building an audience in AI/ML. What's my content strategy?
ð§ How It Works
The Official Algorithm Architecture
Based on the open-sourced code at https://github.com/xai-org/x-algorithm
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
â FOR YOU FEED REQUEST â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
â
â¼
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
â HOME MIXER â
â (Orchestration Layer) â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¤
â â
â 1. QUERY HYDRATION â
â âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ â
â â User Action Sequence (engagement history) + User Features â â
â âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ â
â â â
â â¼ â
â 2. CANDIDATE SOURCES â
â ââââââââââââââââââââââââââââ ââââââââââââââââââââââââââââââââââ â
â â THUNDER â â PHOENIX RETRIEVAL â â
â â (In-Network Posts) â â (Out-of-Network Posts) â â
â â â â â â
â â Posts from accounts â â Two-tower similarity search â â
â â you follow â â across global corpus â â
â â Sub-millisecond lookup â â User Tower + Candidate Tower â â
â ââââââââââââââââââââââââââââ ââââââââââââââââââââââââââââââââââ â
â â â
â â¼ â
â 3. CANDIDATE HYDRATION â
â Fetch: post text, author info, media metadata, video duration â
â â â
â â¼ â
â 4. PRE-SCORING FILTERS â
â Remove: duplicates, too old, self-posts, blocked/muted authors â
â â â
â â¼ â
â 5. SCORING â
â ââââââââââââââââââ ââââââââââââââââââ ââââââââââââââââ â
â â Phoenix Scorer â â â Weighted Scorerâ â â Author â â
â â (Grok-based â â (Combine â â Diversity â â
â â Transformer) â â predictions) â â Scorer â â
â â â â â â â â
â â P(15 actions) â â Σ(weightÃP) â â Decay penaltyâ â
â ââââââââââââââââââ ââââââââââââââââââ ââââââââââââââââ â
â â â
â â¼ â
â 6. SELECTION â
â Sort by final score, select top K candidates â
â â â
â â¼ â
â 7. POST-SELECTION PROCESSING â
â Final validation: deleted/spam/violence/gore filters â
â â â
â â¼ â
â 2. RANKED FEED â
â â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
The 15 Engagement Signals
From the official Phoenix Grok-based transformer model:
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
â POSITIVE SIGNALS (Increase Score) â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¤
â â
â P(favorite) âââââââââââââââââââ User likes the post â
â P(reply) âââââââââââââââââââ User replies to the post â
â P(repost) âââââââââââââââââââ User reposts without comment â
â P(quote) âââââââââââââââââââ User reposts with comment â
â P(click) âââââââââââââââââââ User clicks on the post â
â P(profile_click) âââââââââââââââââââ User clicks author's profile â
â P(video_view) âââââââââââââââââââ User views video content â
â P(photo_expand) âââââââââââââââââââ User expands photo to view â
â P(share) âââââââââââââââââââ User shares the post â
â P(dwell) âââââââââââââââââââ User dwells (pauses) on post â
â P(follow_author) âââââââââââââââââââ User follows the post's author â
â â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¤
â NEGATIVE SIGNALS (Decrease Score) â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¤
â â
â P(not_interested) ââââââââââââââââââââ User marks as not interested â
â P(block_author) ââââââââââââââââââââ User blocks the author â
â P(mute_author) ââââââââââââââââââââ User mutes the author â
â P(report) ââââââââââââââââââââ User reports the post â
â â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
Scoring Formula
Final Score = Σ (weight_i à P(action_i))
Positive actions â Positive weights â Higher score â More reach
Negative actions â Negative weights â Lower score â Less reach
Two-Tower Retrieval (How Out-of-Network Works)
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
â TWO-TOWER MODEL FOR OUT-OF-NETWORK â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¤
â â
â USER TOWER CANDIDATE TOWER â
â âââââââââââââââââââââââ âââââââââââââââââââââââââââââââââââ â
â â â â â â
â â ⢠User Features â â ⢠All Posts in Corpus â â
â â ⢠Engagement â â ⢠Pre-computed Embeddings â â
â â History (128) â â ⢠Processed through MLP â â
â â ⢠Actions Taken â â â â
â â â â â â
â â â¼ â â â¼ â â
â â [User Embedding] â â [Candidate Embeddings] â â
â â â â â â â â
â âââââââââââ¼ââââââââââââ ââââââââââââââ¼ââââââââââââââââââââ â
â â â â
â ââââââââââââââââ¬ââââââââââââââââââââââââ â
â â â
â â¼ â
â DOT PRODUCT SIMILARITY â
â (Finds most similar posts) â
â â â
â â¼ â
â TOP-K RETRIEVAL â
â (Returns thousands of candidates) â
â â
â STRATEGY: Consistent topical posting â Stronger author embedding â
â â Easier for relevant users to find you â
â â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
Author Diversity Penalty
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
â AUTHOR DIVERSITY: POST ATTENUATION â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¤
â â
â Position 1: ââââââââââââââââââââ 100% (full score) â
â Position 2: âââââââââââââââââââââ ~60% (Ã decay_factor) â
â Position 3: ââââââââââââââââââââââ ~36% (à decay_factor²) â
â Position 4: ââââââââââââââââââââââ ~22% (à decay_factor³) â
â â
â STRATEGY: Every post should be substantial. Avoid frequent low-value posts. â
â â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
In-Network vs Out-of-Network
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
â NETWORK STRATEGY: THE COMPOUNDING ADVANTAGE â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ¤
â â
â OUT-OF-NETWORK (OON) IN-NETWORK â
â âââââââââââââââââââââââââââ âââââââââââââââââââââââââââ â
â â ⢠Two-tower similarity â â ⢠Always in candidate â â
â â gate â âââââââââââ¶ â pool â â
â â ⢠May have score â Convert! â ⢠No retrieval penalty â â
â â adjustment â â ⢠Maximum reach â â
â âââââââââââââââââââââââââââ âââââââââââââââââââââââââââ â
â â
â Every follower you convert from OON â In-Network is a PERMANENT upgrade â
â â
â STRATEGY: Create content that makes OON viewers WANT to follow you â
â â
âââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââââ
ð Response Format
The skill provides structured, algorithm-backed feedback:
VERDICT: [WILL GO VIRAL / GOOD START / NEEDS WORK / WILL FLOP]
SIGNAL ANALYSIS:
- Reply: [High/Medium/Low] - [reasoning]
- Repost/Quote: [High/Medium/Low] - [reasoning]
- Dwell: [High/Medium/Low] - [reasoning]
- Follow: [High/Medium/Low] - [reasoning]
- Profile Click: [High/Medium/Low] - [reasoning]
WEAKNESSES:
1. [Specific issue with signal impact]
2. [Specific issue with signal impact]
OPTIMIZED VERSION:
[Your improved version]
WHY THIS WORKS BETTER:
[Algorithm explanation]
ð¨ Compound Patterns
The Multi-Signal Thread
Hook (curiosity) â Claim (debate-able) â Evidence (specific) â
Extension (open question) â CTA (follow for more)
Signals: dwell, reply, quote, profile_click, follow_author
Example:
I reviewed 200 failed startups for Y Combinator.
Here's what most people get wrong:
1. They pivoted too late, not too early
2. The cofounder conflicts started before the idea
3. "Running out of money" was the symptom, not the cause
4. The winners had customers before they had product
The real lesson: Speed of learning beats everything else.
What did I miss?
The Network Bridge
Quote high-authority post â Your unique angle â
Specific insight â "Follow me for [niche] insights"
Signals: quote, profile_click, follow_author
The Value Share
Clear promise â Scannable content â
Save-worthy insight â Reference value
Signals: dwell, share, profile_click
â ï¸ Anti-Patterns to Avoid
Immediately Reject If:
| Anti-Pattern | Why It Fails | Algorithm Impact |
|---|---|---|
| Explicit CTA (“like/repost if”) | Learned inauthenticity | not_interested â |
| Generic AI vocabulary | Structural tell | Reduces all signals |
| Perfect 3-item lists | AI structural pattern | Reduces dwell |
| Every thought as thread | Diversity penalty | Score à decay^position |
| Posting >3x/day | Embedding dilution | Weaker retrieval |
| Reposting same content | Deduplication filter | Filtered out entirely |
Red Flag Warnings:
- Punching down â
block_author,mute_authorâ - Rage bait â Short-term
replygain, long-term damage - “Not just X, but Y” â AI structural tell
- Em dash overuse â AI structural pattern
𧪠Example Usage
Input
Review this post:
"3 tips for better productivity:
1. Wake up early
2. Make a to-do list
3. Take breaks
What would you add?"
Output
VERDICT: WILL FLOP
SIGNAL ANALYSIS:
- Reply: Low - Generic question, no debate-worthy claim
- Quote: Low - No unique angle worth sharing
- Dwell: Low - Common knowledge, no new insights
- Follow: Low - Doesn't demonstrate unique expertise
- Profile Click: Low - No credibility signals
WEAKNESSES:
1. Generic AI vocabulary ("tips", "better", "productivity")
2. Perfectly structured 3-item list (structural tell)
3. Every point is common knowledge (no unique value)
4. Weak CTA that adds nothing
OPTIMIZED VERSION:
I tracked my time for 30 days to find my productivity killer.
It wasn't social media. It wasn't meetings.
It was "productive procrastination"âdoing easy tasks to avoid hard ones.
The fix that actually worked:
⢠One "frog" (hard task) before anything else
⢠Time-boxed deep work (90min max)
⢠Zero notifications during focus blocks
My deep work hours increased 3x.
What's your weirdest productivity discovery?
WHY THIS WORKS BETTER:
⢠Specific personal story (dwell signal)
⢠Non-obvious insight (reply/quote signals)
⢠Clear numbers (credibility â follow signal)
⢠Open question about "weird" (encourages unique replies)
⢠Contractions and natural voice (avoids AI detection)
ð Technical Reference
Key Components
- Home Mixer: Orchestration layer with 7-stage pipeline
- Thunder: In-memory in-network post store (sub-millisecond lookups)
- Phoenix: Two-tower retrieval + Grok-based transformer ranking
- Candidate Pipeline: Composable framework for recommendation systems
Design Principles
- No Hand-Engineered Features – The transformer learns everything from engagement sequences
- Candidate Isolation – Posts don’t attend to each other during scoring (consistent, cacheable scores)
- Hash-Based Embeddings – Multiple hash functions for efficient embedding lookup
- Multi-Action Prediction – 15 engagement types, not a single “relevance” score
Official Source
This skill is based entirely on the open-sourced algorithm at: https://github.com/xai-org/x-algorithm
ð¤ Contributing
Contributions welcome! Please ensure all changes trace back to the official documentation.
ð License
MIT License – see LICENSE.txt for details.
ð Acknowledgments
- xAI for open-sourcing the recommendation algorithm
- home-mixer, thunder, and phoenix teams
- Claude Code team for the skills framework
Built with â¤ï¸ from the official source code