shap
0
总安装量
7
周安装量
安装命令
npx skills add https://github.com/eyadsibai/ltk --skill shap
Agent 安装分布
gemini-cli
6
antigravity
5
claude-code
5
github-copilot
5
opencode
4
Skill 文档
SHAP Model Explainability
Explain ML predictions using Shapley values – feature importance and attribution.
When to Use
- Explain why a model made specific predictions
- Calculate feature importance with attribution
- Debug model behavior and validate predictions
- Create interpretability plots (waterfall, beeswarm, bar)
- Analyze model fairness and bias
Quick Start
import shap
import xgboost as xgb
# Train model
model = xgb.XGBClassifier().fit(X_train, y_train)
# Create explainer
explainer = shap.TreeExplainer(model)
# Compute SHAP values
shap_values = explainer(X_test)
# Visualize
shap.plots.beeswarm(shap_values)
Choose Explainer
# Tree-based models (XGBoost, LightGBM, RF) - FAST
explainer = shap.TreeExplainer(model)
# Deep learning (TensorFlow, PyTorch)
explainer = shap.DeepExplainer(model, background_data)
# Linear models
explainer = shap.LinearExplainer(model, X_train)
# Any model (slower but universal)
explainer = shap.KernelExplainer(model.predict, X_train[:100])
# Auto-select best explainer
explainer = shap.Explainer(model)
Compute SHAP Values
# Compute for test set
shap_values = explainer(X_test)
# Access components
shap_values.values # SHAP values (feature attributions)
shap_values.base_values # Expected model output (baseline)
shap_values.data # Original feature values
Visualizations
Global Feature Importance
# Beeswarm - shows distribution and importance
shap.plots.beeswarm(shap_values)
# Bar - clean summary
shap.plots.bar(shap_values)
Individual Predictions
# Waterfall - breakdown of single prediction
shap.plots.waterfall(shap_values[0])
# Force - additive visualization
shap.plots.force(shap_values[0])
Feature Relationships
# Scatter - feature vs SHAP value
shap.plots.scatter(shap_values[:, "feature_name"])
# With interaction coloring
shap.plots.scatter(shap_values[:, "Age"], color=shap_values[:, "Income"])
Heatmap (Multiple Samples)
shap.plots.heatmap(shap_values[:100])
Common Patterns
Complete Analysis
import shap
# 1. Create explainer and compute
explainer = shap.TreeExplainer(model)
shap_values = explainer(X_test)
# 2. Global importance
shap.plots.beeswarm(shap_values)
# 3. Top feature relationships
shap.plots.scatter(shap_values[:, "top_feature"])
# 4. Individual explanation
shap.plots.waterfall(shap_values[0])
Compare Groups
# Compare feature importance across groups
group_a = X_test['category'] == 'A'
group_b = X_test['category'] == 'B'
shap.plots.bar({
"Group A": shap_values[group_a],
"Group B": shap_values[group_b]
})
Debug Errors
# Find misclassified samples
errors = model.predict(X_test) != y_test
error_idx = np.where(errors)[0]
# Explain why they failed
for idx in error_idx[:5]:
shap.plots.waterfall(shap_values[idx])
Interpret Values
- Positive SHAP â Feature pushes prediction higher
- Negative SHAP â Feature pushes prediction lower
- Magnitude â Strength of impact
- Sum of SHAP values = Prediction – Baseline
Baseline: 0.30
Age: +0.15
Income: +0.10
Education: -0.05
Prediction: 0.30 + 0.15 + 0.10 - 0.05 = 0.50
Best Practices
- Use TreeExplainer for tree models (fast, exact)
- Use 100-1000 background samples for KernelExplainer
- Start global (beeswarm) then go local (waterfall)
- Check model output type (probability vs log-odds)
- Validate with domain knowledge
vs Alternatives
| Tool | Best For |
|---|---|
| SHAP | Theoretically grounded, all model types |
| LIME | Quick local explanations |
| Feature Importance | Simple tree-based importance |
Resources
- Docs: https://shap.readthedocs.io/
- Paper: Lundberg & Lee (2017) “A Unified Approach to Interpreting Model Predictions”