vercel-ai-sdk

📁 existential-birds/beagle 📅 Jan 19, 2026
40
总安装量
39
周安装量
#5195
全站排名
安装命令
npx skills add https://github.com/existential-birds/beagle --skill vercel-ai-sdk

Agent 安装分布

claude-code 31
gemini-cli 29
opencode 29
codex 25
antigravity 25
cursor 23

Skill 文档

Vercel AI SDK

The Vercel AI SDK provides React hooks and server utilities for building streaming chat interfaces with support for tool calls, file attachments, and multi-step reasoning.

Quick Reference

Basic useChat Setup

import { useChat } from '@ai-sdk/react';

const { messages, status, sendMessage, stop, regenerate } = useChat({
  id: 'chat-id',
  messages: initialMessages,
  onFinish: ({ message, messages, isAbort, isError }) => {
    console.log('Chat finished');
  },
  onError: (error) => {
    console.error('Chat error:', error);
  }
});

// Send a message
sendMessage({ text: 'Hello', metadata: { createdAt: Date.now() } });

// Send with files
sendMessage({
  text: 'Analyze this',
  files: fileList // FileList or FileUIPart[]
});

ChatStatus States

The status field indicates the current state of the chat:

  • ready: Chat is idle and ready to accept new messages
  • submitted: Message sent to API, awaiting response stream start
  • streaming: Response actively streaming from the API
  • error: An error occurred during the request

Message Structure

Messages use the UIMessage type with a parts-based structure:

interface UIMessage {
  id: string;
  role: 'system' | 'user' | 'assistant';
  metadata?: unknown;
  parts: Array<UIMessagePart>; // text, file, tool-*, reasoning, etc.
}

Part types include:

  • text: Text content with optional streaming state
  • file: File attachments (images, documents)
  • tool-{toolName}: Tool invocations with state machine
  • reasoning: AI reasoning traces
  • data-{typeName}: Custom data parts

Server-Side Streaming

import { streamText } from 'ai';
import { convertToModelMessages } from 'ai';

const result = streamText({
  model: openai('gpt-4'),
  messages: convertToModelMessages(uiMessages),
  tools: {
    getWeather: tool({
      description: 'Get weather',
      inputSchema: z.object({ city: z.string() }),
      execute: async ({ city }) => {
        return { temperature: 72, weather: 'sunny' };
      }
    })
  }
});

return result.toUIMessageStreamResponse({
  originalMessages: uiMessages,
  onFinish: ({ messages }) => {
    // Save to database
  }
});

Tool Handling Patterns

Client-Side Tool Execution:

const { addToolOutput } = useChat({
  onToolCall: async ({ toolCall }) => {
    if (toolCall.toolName === 'getLocation') {
      addToolOutput({
        tool: 'getLocation',
        toolCallId: toolCall.toolCallId,
        output: 'San Francisco'
      });
    }
  }
});

Rendering Tool States:

{message.parts.map(part => {
  if (part.type === 'tool-getWeather') {
    switch (part.state) {
      case 'input-streaming':
        return <pre>{JSON.stringify(part.input, null, 2)}</pre>;
      case 'input-available':
        return <div>Getting weather for {part.input.city}...</div>;
      case 'output-available':
        return <div>Weather: {part.output.weather}</div>;
      case 'output-error':
        return <div>Error: {part.errorText}</div>;
    }
  }
})}

Reference Files

Detailed documentation on specific aspects:

Common Patterns

Error Handling

const { error, clearError } = useChat({
  onError: (error) => {
    toast.error(error.message);
  }
});

// Clear error and reset to ready state
if (error) {
  clearError();
}

Message Regeneration

const { regenerate } = useChat();

// Regenerate last assistant message
await regenerate();

// Regenerate specific message
await regenerate({ messageId: 'msg-123' });

Custom Transport

import { DefaultChatTransport } from 'ai';

const { messages } = useChat({
  transport: new DefaultChatTransport({
    api: '/api/chat',
    prepareSendMessagesRequest: ({ id, messages, trigger, messageId }) => ({
      body: {
        chatId: id,
        lastMessage: messages[messages.length - 1],
        trigger,
        messageId
      }
    })
  })
});

Performance Optimization

// Throttle UI updates to reduce re-renders
const chat = useChat({
  experimental_throttle: 100 // Update max once per 100ms
});

Automatic Message Sending

import { lastAssistantMessageIsCompleteWithToolCalls } from 'ai';

const chat = useChat({
  sendAutomaticallyWhen: lastAssistantMessageIsCompleteWithToolCalls
  // Automatically resend when all tool calls have outputs
});

Type Safety

The SDK provides full type inference for tools and messages:

import { InferUITools, UIMessage } from 'ai';

const tools = {
  getWeather: tool({
    inputSchema: z.object({ city: z.string() }),
    execute: async ({ city }) => ({ weather: 'sunny' })
  })
};

type MyMessage = UIMessage<
  { createdAt: number }, // Metadata type
  UIDataTypes,
  InferUITools<typeof tools> // Tool types
>;

const { messages } = useChat<MyMessage>();

Key Concepts

Parts-Based Architecture

Messages use a parts array instead of a single content field. This allows:

  • Streaming text while maintaining other parts
  • Tool calls with independent state machines
  • File attachments and custom data mixed with text

Tool State Machine

Tool parts progress through states:

  1. input-streaming: Tool input streaming (optional)
  2. input-available: Tool input complete
  3. approval-requested: Waiting for user approval (optional)
  4. approval-responded: User approved/denied (optional)
  5. output-available: Tool execution complete
  6. output-error: Tool execution failed
  7. output-denied: User denied approval

Streaming Protocol

The SDK uses Server-Sent Events (SSE) with UIMessageChunk types:

  • text-start, text-delta, text-end
  • tool-input-available, tool-output-available
  • reasoning-start, reasoning-delta, reasoning-end
  • start, finish, abort

Client vs Server Tools

Server-side tools have an execute function and run on the API route.

Client-side tools omit execute and are handled via onToolCall and addToolOutput.

Best Practices

  1. Always handle the error state and provide user feedback
  2. Use experimental_throttle for high-frequency updates
  3. Implement proper loading states based on status
  4. Type your messages with custom metadata and tools
  5. Use sendAutomaticallyWhen for multi-turn tool workflows
  6. Handle all tool states in the UI for better UX
  7. Use stop() to allow users to cancel long-running requests
  8. Validate messages with validateUIMessages on the server