vercel-ai-sdk
npx skills add https://github.com/existential-birds/beagle --skill vercel-ai-sdk
Agent 安装分布
Skill 文档
Vercel AI SDK
The Vercel AI SDK provides React hooks and server utilities for building streaming chat interfaces with support for tool calls, file attachments, and multi-step reasoning.
Quick Reference
Basic useChat Setup
import { useChat } from '@ai-sdk/react';
const { messages, status, sendMessage, stop, regenerate } = useChat({
id: 'chat-id',
messages: initialMessages,
onFinish: ({ message, messages, isAbort, isError }) => {
console.log('Chat finished');
},
onError: (error) => {
console.error('Chat error:', error);
}
});
// Send a message
sendMessage({ text: 'Hello', metadata: { createdAt: Date.now() } });
// Send with files
sendMessage({
text: 'Analyze this',
files: fileList // FileList or FileUIPart[]
});
ChatStatus States
The status field indicates the current state of the chat:
ready: Chat is idle and ready to accept new messagessubmitted: Message sent to API, awaiting response stream startstreaming: Response actively streaming from the APIerror: An error occurred during the request
Message Structure
Messages use the UIMessage type with a parts-based structure:
interface UIMessage {
id: string;
role: 'system' | 'user' | 'assistant';
metadata?: unknown;
parts: Array<UIMessagePart>; // text, file, tool-*, reasoning, etc.
}
Part types include:
text: Text content with optional streaming statefile: File attachments (images, documents)tool-{toolName}: Tool invocations with state machinereasoning: AI reasoning tracesdata-{typeName}: Custom data parts
Server-Side Streaming
import { streamText } from 'ai';
import { convertToModelMessages } from 'ai';
const result = streamText({
model: openai('gpt-4'),
messages: convertToModelMessages(uiMessages),
tools: {
getWeather: tool({
description: 'Get weather',
inputSchema: z.object({ city: z.string() }),
execute: async ({ city }) => {
return { temperature: 72, weather: 'sunny' };
}
})
}
});
return result.toUIMessageStreamResponse({
originalMessages: uiMessages,
onFinish: ({ messages }) => {
// Save to database
}
});
Tool Handling Patterns
Client-Side Tool Execution:
const { addToolOutput } = useChat({
onToolCall: async ({ toolCall }) => {
if (toolCall.toolName === 'getLocation') {
addToolOutput({
tool: 'getLocation',
toolCallId: toolCall.toolCallId,
output: 'San Francisco'
});
}
}
});
Rendering Tool States:
{message.parts.map(part => {
if (part.type === 'tool-getWeather') {
switch (part.state) {
case 'input-streaming':
return <pre>{JSON.stringify(part.input, null, 2)}</pre>;
case 'input-available':
return <div>Getting weather for {part.input.city}...</div>;
case 'output-available':
return <div>Weather: {part.output.weather}</div>;
case 'output-error':
return <div>Error: {part.errorText}</div>;
}
}
})}
Reference Files
Detailed documentation on specific aspects:
- use-chat.md: Complete useChat API reference
- messages.md: UIMessage structure and part types
- streaming.md: Server-side streaming implementation
- tools.md: Tool definition and execution patterns
Common Patterns
Error Handling
const { error, clearError } = useChat({
onError: (error) => {
toast.error(error.message);
}
});
// Clear error and reset to ready state
if (error) {
clearError();
}
Message Regeneration
const { regenerate } = useChat();
// Regenerate last assistant message
await regenerate();
// Regenerate specific message
await regenerate({ messageId: 'msg-123' });
Custom Transport
import { DefaultChatTransport } from 'ai';
const { messages } = useChat({
transport: new DefaultChatTransport({
api: '/api/chat',
prepareSendMessagesRequest: ({ id, messages, trigger, messageId }) => ({
body: {
chatId: id,
lastMessage: messages[messages.length - 1],
trigger,
messageId
}
})
})
});
Performance Optimization
// Throttle UI updates to reduce re-renders
const chat = useChat({
experimental_throttle: 100 // Update max once per 100ms
});
Automatic Message Sending
import { lastAssistantMessageIsCompleteWithToolCalls } from 'ai';
const chat = useChat({
sendAutomaticallyWhen: lastAssistantMessageIsCompleteWithToolCalls
// Automatically resend when all tool calls have outputs
});
Type Safety
The SDK provides full type inference for tools and messages:
import { InferUITools, UIMessage } from 'ai';
const tools = {
getWeather: tool({
inputSchema: z.object({ city: z.string() }),
execute: async ({ city }) => ({ weather: 'sunny' })
})
};
type MyMessage = UIMessage<
{ createdAt: number }, // Metadata type
UIDataTypes,
InferUITools<typeof tools> // Tool types
>;
const { messages } = useChat<MyMessage>();
Key Concepts
Parts-Based Architecture
Messages use a parts array instead of a single content field. This allows:
- Streaming text while maintaining other parts
- Tool calls with independent state machines
- File attachments and custom data mixed with text
Tool State Machine
Tool parts progress through states:
input-streaming: Tool input streaming (optional)input-available: Tool input completeapproval-requested: Waiting for user approval (optional)approval-responded: User approved/denied (optional)output-available: Tool execution completeoutput-error: Tool execution failedoutput-denied: User denied approval
Streaming Protocol
The SDK uses Server-Sent Events (SSE) with UIMessageChunk types:
text-start,text-delta,text-endtool-input-available,tool-output-availablereasoning-start,reasoning-delta,reasoning-endstart,finish,abort
Client vs Server Tools
Server-side tools have an execute function and run on the API route.
Client-side tools omit execute and are handled via onToolCall and addToolOutput.
Best Practices
- Always handle the
errorstate and provide user feedback - Use
experimental_throttlefor high-frequency updates - Implement proper loading states based on
status - Type your messages with custom metadata and tools
- Use
sendAutomaticallyWhenfor multi-turn tool workflows - Handle all tool states in the UI for better UX
- Use
stop()to allow users to cancel long-running requests - Validate messages with
validateUIMessageson the server