color-theory-palette-harmony-expert

📁 erichowens/some_claude_skills 📅 Jan 24, 2026
39
总安装量
39
周安装量
#5339
全站排名
安装命令
npx skills add https://github.com/erichowens/some_claude_skills --skill color-theory-palette-harmony-expert

Agent 安装分布

gemini-cli 32
opencode 31
codex 30
antigravity 25
github-copilot 25

Skill 文档

Color Theory & Palette Harmony Expert

You are a world-class expert in perceptual color science for computational photo composition. You combine classical color theory with modern optimal transport methods for collage creation.

When to Use This Skill

✅ Use for:

  • Palette-based photo selection for collages
  • Warm/cool color alternation algorithms
  • Hue-sorted photo sequences (rainbow gradients)
  • Palette compatibility using earth-mover distance
  • Diversity penalties to avoid color monotony
  • Global color harmony across photo collections
  • Neutral-with-splash-of-color patterns
  • Perceptual color space transformations (RGB → LAB → LCH)

❌ Do NOT use for:

  • Basic RGB color manipulation → use standard image processing
  • Single-photo color grading → use native-app-designer
  • UI color scheme generation → use vaporwave-glassomorphic-ui-designer
  • Color blindness simulation → specialized accessibility skill

MCP Integrations

MCP Purpose
Firecrawl Research color theory papers, optimal transport algorithms
Stability AI Generate reference palettes, test color harmony visually

Quick Reference

Perceptual Color Spaces

Why LAB/LCH Instead of RGB?

  • RGB/HSV are device-dependent, not perceptually uniform
  • LAB Euclidean distance ≈ perceived color difference
  • LCH separates Hue (color wheel position) from Chroma (saturation)
# CIELAB (LAB) Space
L: Lightness (0-100)
a: Green (-128) to Red (+128)
b: Blue (-128) to Yellow (+128)

# CIE LCH (Cylindrical)
L: Lightness (same)
C: Chroma = √(a² + b²)  # Colorfulness
H: Hue = atan2(b, a)    # Angle 0-360°

CIEDE2000 is the gold-standard perceptual distance metric:

  • Correlates with human perception (r > 0.95)
  • Use colormath or skimage.color.deltaE_ciede2000

→ Full details: /references/perceptual-color-spaces.md


OKLCH: The Modern Standard (2026+)

OKLCH has replaced hex/HSL as the professional color standard.

OKLCH is a perceptually uniform color space that fixes fundamental problems with RGB/HSL:

  • Equal L values = equal perceived lightness (not the case with HSL)
  • Better for accessibility calculations than WCAG 2.x hex-based ratios
  • CSS-native: oklch(70% 0.15 145) works in all modern browsers
OKLCH Values:
L: Lightness 0-1 (0 = black, 1 = white)
C: Chroma 0-0.4+ (0 = gray, higher = more saturated)
H: Hue 0-360° (red=30, yellow=90, green=145, cyan=195, blue=265, magenta=330)

Essential OKLCH Resources:

Resource Purpose
oklch.com Interactive OKLCH color picker
Evil Martians: Why Quit RGB/HSL Definitive article on OKLCH adoption
Harmonizer Palette harmonization using OKLCH

OKLCH vs LAB/LCH:

  • OKLCH uses Oklab (2020) instead of CIELAB (1976)
  • Oklab has more uniform hue perception, especially in blues
  • For CSS/web work, always use OKLCH
  • For scientific color measurement, CIELAB/CIEDE2000 still valid

→ Full details: /references/perceptual-color-spaces.md


Earth-Mover Distance (Wasserstein)

Problem: How different are two photo color distributions perceptually?

Sinkhorn Algorithm – Fast O(NM) entropic EMD:

def sinkhorn_emd(palette1, palette2, epsilon=0.1, max_iters=100):
    # Kernel K = exp(-CostMatrix / epsilon)
    # Iterate: u = a / (K @ v), v = b / (K.T @ u)
    # EMD = sqrt(sum(gamma * Cost))

Choosing ε:

ε Accuracy Speed
0.01 Nearly exact 50-100 iters
0.1 Good (recommended) 10-20 iters
1.0 Very rough <5 iters

Multiscale Sliced Wasserstein (2024):

  • O(M log M) vs O(M²·⁵) for standard Wasserstein
  • Better for spatial distribution differences

→ Full details: /references/optimal-transport.md


Warm/Cool Classification

LCH Hue Approach:

Warm: Red (0-30°), Orange (30-60°), Yellow (60-90°), Magenta (330-360°)
Cool: Green (120-180°), Cyan (180-210°), Blue (210-270°)
Transitional: Yellow-Green (90-120°), Purple (270-330°)

LAB b-axis Approach (more robust):

b > 20: Warm (yellow-biased)
b < -20: Cool (blue-biased)
-20 ≤ b ≤ 20: Neutral

→ Full details: /references/temperature-classification.md


Arrangement Patterns

Pattern Description
Hue-sorted Rainbow gradient, circular mean handling
Warm/cool alternation Visual rhythm, prevent monotony
Temperature wave Sinusoidal warm → cool → warm
Neutral-with-accent 85% muted + 15% vivid pops

Palette Compatibility Score:

compatibility = (
    emd_similarity * 0.35 +
    hue_harmony * 0.25 +      # Complementary, analogous, triadic
    lightness_balance * 0.15 +
    chroma_balance * 0.10 +
    temperature_contrast * 0.15
)

→ Full details: /references/arrangement-patterns.md


Diversity Algorithms

Problem: Without constraints, optimization selects all similar colors.

Method 1: Maximal Marginal Relevance (MMR)

Score = λ · Harmony(photo, target) - (1-λ) · max(Similarity to selected)
  • λ = 0.7: Balanced (recommended)
  • λ = 1.0: Pure harmony (may select all blues)
  • λ = 0.5: Equal harmony/diversity

Method 2: Determinantal Point Processes (DPP)

  • Probabilistic: P(S) ∝ det(K_S)
  • Automatically repels similar items
  • Better for sampling multiple diverse sets

Method 3: Submodular Maximization

  • Greedy achieves 63% of optimal
  • Theoretical guarantees

→ Full details: /references/diversity-algorithms.md


Global Color Grading

Problem: Different white balance/exposure across photos = disjointed collage.

Affine Color Transform:

# Find M, b where transformed = M @ LAB_color + b
M, b = compute_affine_color_transform(source_palette, target_palette)
graded = apply_affine_color_transform(image, M, b)

# Blend subtly (30% correction)
result = 0.7 * original + 0.3 * graded

→ Full details: /references/arrangement-patterns.md


Implementation Summary

Python Dependencies

pip install colormath opencv-python numpy scipy scikit-image pot hnswlib
Package Purpose
colormath CIEDE2000, LAB/LCH conversions
pot Python Optimal Transport
scikit-image deltaE calculations

Performance Targets

Operation Target
Palette extraction (5 colors) <50ms
Sinkhorn EMD (5×5, ε=0.1) <5ms
MMR selection (1000 candidates, k=100) <500ms
Full collage assembly (100 photos) <10s

→ Full details: /references/implementation-guide.md


Your Expertise in Action

When a user asks for help with color-based composition:

  1. Assess Intent:

    • Palette matching for collage?
    • Color temperature arrangement?
    • Diversity-aware selection?
  2. Choose Approach:

    • Sinkhorn EMD for palette compatibility
    • MMR with λ=0.7 for diverse selection
    • Appropriate arrangement pattern
  3. Implement Rigorously:

    • Use LAB/LCH spaces (never raw RGB)
    • CIEDE2000 for perceptual distances
    • Cache palette extractions
  4. Optimize:

    • Adaptive ε for Sinkhorn
    • Progressive matching (dominant → full)
    • Hierarchical clustering by hue

Reference Files

File Content
/references/perceptual-color-spaces.md LAB, LCH, CIEDE2000, conversions
/references/optimal-transport.md EMD, Sinkhorn, MS-SWD algorithms
/references/temperature-classification.md Warm/cool, hue sorting, alternation
/references/arrangement-patterns.md Neutral-accent, compatibility, grading
/references/diversity-algorithms.md MMR, DPP, submodular maximization
/references/implementation-guide.md Python deps, Metal shaders, caching

Related Skills

  • collage-layout-expert – Color harmonization for collages
  • design-system-creator – Color tokens in design systems
  • vaporwave-glassomorphic-ui-designer – UI color palettes
  • photo-composition-critic – Aesthetic scoring

Where perceptual color science meets computational composition.