speckit-plan

📁 dceoy/speckit-agent-skills 📅 Jan 29, 2026
0
总安装量
7
周安装量
安装命令
npx skills add https://github.com/dceoy/speckit-agent-skills --skill speckit-plan

Agent 安装分布

opencode 5
claude-code 3
codex 2
github-copilot 2
antigravity 2
gemini-cli 2

Skill 文档

Spec Kit Plan Skill

When to Use

  • The feature spec is ready and you need a technical implementation plan.

Inputs

  • specs/<feature>/spec.md
  • Repo context and .specify/ templates
  • User-provided constraints or tech preferences (if any)

If the spec is missing, ask the user to run speckit-specify first.

Workflow

  1. Setup: Run .specify/scripts/bash/setup-plan.sh --json from repo root and parse JSON for FEATURE_SPEC, IMPL_PLAN, SPECS_DIR, BRANCH. For single quotes in args like “I’m Groot”, use escape syntax: e.g ‘I”’m Groot’ (or double-quote if possible: “I’m Groot”).

  2. Load context: Read FEATURE_SPEC and .specify/memory/constitution.md. Load IMPL_PLAN template (already copied).

  3. Execute plan workflow: Follow the structure in IMPL_PLAN template to:

    • Fill Technical Context (mark unknowns as “NEEDS CLARIFICATION”)
    • Fill Constitution Check section from constitution
    • Evaluate gates (ERROR if violations unjustified)
    • Phase 0: Generate research.md (resolve all NEEDS CLARIFICATION)
    • Phase 1: Generate data-model.md, contracts/, quickstart.md
    • Phase 1: Update agent context by running the agent script
    • Re-evaluate Constitution Check post-design
  4. Stop and report: Command ends after Phase 2 planning. Report branch, IMPL_PLAN path, and generated artifacts.

Phases

Phase 0: Outline & Research

  1. Extract unknowns from Technical Context above:

    • For each NEEDS CLARIFICATION → research task
    • For each dependency → best practices task
    • For each integration → patterns task
  2. Generate and dispatch research agents:

    For each unknown in Technical Context:
      Task: "Research {unknown} for {feature context}"
    For each technology choice:
      Task: "Find best practices for {tech} in {domain}"
    
  3. Consolidate findings in research.md using format:

    • Decision: [what was chosen]
    • Rationale: [why chosen]
    • Alternatives considered: [what else evaluated]

Output: research.md with all NEEDS CLARIFICATION resolved

Phase 1: Design & Contracts

Prerequisites: research.md complete

  1. Extract entities from feature spec → data-model.md:

    • Entity name, fields, relationships
    • Validation rules from requirements
    • State transitions if applicable
  2. Generate API contracts from functional requirements:

    • For each user action → endpoint
    • Use standard REST/GraphQL patterns
    • Output OpenAPI/GraphQL schema to /contracts/
  3. Agent context update:

    • Run .specify/scripts/bash/update-agent-context.sh <agent_type>
    • Use the current runtime agent type (e.g., claude, codex, copilot, gemini). Leave empty to update all existing agent files.
    • Update the appropriate agent-specific context file
    • Add only new technology from current plan
    • Preserve manual additions between markers

Output: data-model.md, /contracts/*, quickstart.md, agent-specific file

Key rules

  • Use absolute paths
  • ERROR on gate failures or unresolved clarifications

Outputs

  • specs/<feature>/plan.md (filled implementation plan)
  • specs/<feature>/research.md
  • specs/<feature>/data-model.md
  • specs/<feature>/contracts/ (API schemas)
  • specs/<feature>/quickstart.md
  • Updated agent context file (runtime-specific)

Next Steps

After planning:

  • Generate tasks with speckit-tasks.
  • Create a checklist with speckit-checklist when a quality gate is needed.