databricks-jobs
1
总安装量
1
周安装量
#43152
全站排名
安装命令
npx skills add https://github.com/databricks-solutions/ai-dev-kit --skill databricks-jobs
Agent 安装分布
amp
1
opencode
1
kimi-cli
1
github-copilot
1
claude-code
1
Skill 文档
Databricks Lakeflow Jobs
Overview
Databricks Jobs orchestrate data workflows with multi-task DAGs, flexible triggers, and comprehensive monitoring. Jobs support diverse task types and can be managed via Python SDK, CLI, or Asset Bundles.
Reference Files
| Use Case | Reference File |
|---|---|
| Configure task types (notebook, Python, SQL, dbt, etc.) | task-types.md |
| Set up triggers and schedules | triggers-schedules.md |
| Configure notifications and health monitoring | notifications-monitoring.md |
| Complete working examples | examples.md |
Quick Start
Python SDK
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.jobs import Task, NotebookTask, Source
w = WorkspaceClient()
job = w.jobs.create(
name="my-etl-job",
tasks=[
Task(
task_key="extract",
notebook_task=NotebookTask(
notebook_path="/Workspace/Users/user@example.com/extract",
source=Source.WORKSPACE
)
)
]
)
print(f"Created job: {job.job_id}")
CLI
databricks jobs create --json '{
"name": "my-etl-job",
"tasks": [{
"task_key": "extract",
"notebook_task": {
"notebook_path": "/Workspace/Users/user@example.com/extract",
"source": "WORKSPACE"
}
}]
}'
Asset Bundles (DABs)
# resources/jobs.yml
resources:
jobs:
my_etl_job:
name: "[${bundle.target}] My ETL Job"
tasks:
- task_key: extract
notebook_task:
notebook_path: ../src/notebooks/extract.py
Core Concepts
Multi-Task Workflows
Jobs support DAG-based task dependencies:
tasks:
- task_key: extract
notebook_task:
notebook_path: ../src/extract.py
- task_key: transform
depends_on:
- task_key: extract
notebook_task:
notebook_path: ../src/transform.py
- task_key: load
depends_on:
- task_key: transform
run_if: ALL_SUCCESS # Only run if all dependencies succeed
notebook_task:
notebook_path: ../src/load.py
run_if conditions:
ALL_SUCCESS(default) – Run when all dependencies succeedALL_DONE– Run when all dependencies complete (success or failure)AT_LEAST_ONE_SUCCESS– Run when at least one dependency succeedsNONE_FAILED– Run when no dependencies failedALL_FAILED– Run when all dependencies failedAT_LEAST_ONE_FAILED– Run when at least one dependency failed
Task Types Summary
| Task Type | Use Case | Reference |
|---|---|---|
notebook_task |
Run notebooks | task-types.md#notebook-task |
spark_python_task |
Run Python scripts | task-types.md#spark-python-task |
python_wheel_task |
Run Python wheels | task-types.md#python-wheel-task |
sql_task |
Run SQL queries/files | task-types.md#sql-task |
dbt_task |
Run dbt projects | task-types.md#dbt-task |
pipeline_task |
Trigger DLT/SDP pipelines | task-types.md#pipeline-task |
spark_jar_task |
Run Spark JARs | task-types.md#spark-jar-task |
run_job_task |
Trigger other jobs | task-types.md#run-job-task |
for_each_task |
Loop over inputs | task-types.md#for-each-task |
Trigger Types Summary
| Trigger Type | Use Case | Reference |
|---|---|---|
schedule |
Cron-based scheduling | triggers-schedules.md#cron-schedule |
trigger.periodic |
Interval-based | triggers-schedules.md#periodic-trigger |
trigger.file_arrival |
File arrival events | triggers-schedules.md#file-arrival-trigger |
trigger.table_update |
Table change events | triggers-schedules.md#table-update-trigger |
continuous |
Always-running jobs | triggers-schedules.md#continuous-jobs |
Compute Configuration
Job Clusters (Recommended)
Define reusable cluster configurations:
job_clusters:
- job_cluster_key: shared_cluster
new_cluster:
spark_version: "15.4.x-scala2.12"
node_type_id: "i3.xlarge"
num_workers: 2
spark_conf:
spark.speculation: "true"
tasks:
- task_key: my_task
job_cluster_key: shared_cluster
notebook_task:
notebook_path: ../src/notebook.py
Autoscaling Clusters
new_cluster:
spark_version: "15.4.x-scala2.12"
node_type_id: "i3.xlarge"
autoscale:
min_workers: 2
max_workers: 8
Existing Cluster
tasks:
- task_key: my_task
existing_cluster_id: "0123-456789-abcdef12"
notebook_task:
notebook_path: ../src/notebook.py
Serverless Compute
For notebook and Python tasks, omit cluster configuration to use serverless:
tasks:
- task_key: serverless_task
notebook_task:
notebook_path: ../src/notebook.py
# No cluster config = serverless
Job Parameters
Define Parameters
parameters:
- name: env
default: "dev"
- name: date
default: "{{start_date}}" # Dynamic value reference
Access in Notebook
# In notebook
dbutils.widgets.get("env")
dbutils.widgets.get("date")
Pass to Tasks
tasks:
- task_key: my_task
notebook_task:
notebook_path: ../src/notebook.py
base_parameters:
env: "{{job.parameters.env}}"
custom_param: "value"
Common Operations
Python SDK Operations
from databricks.sdk import WorkspaceClient
w = WorkspaceClient()
# List jobs
jobs = w.jobs.list()
# Get job details
job = w.jobs.get(job_id=12345)
# Run job now
run = w.jobs.run_now(job_id=12345)
# Run with parameters
run = w.jobs.run_now(
job_id=12345,
job_parameters={"env": "prod", "date": "2024-01-15"}
)
# Cancel run
w.jobs.cancel_run(run_id=run.run_id)
# Delete job
w.jobs.delete(job_id=12345)
CLI Operations
# List jobs
databricks jobs list
# Get job details
databricks jobs get 12345
# Run job
databricks jobs run-now 12345
# Run with parameters
databricks jobs run-now 12345 --job-params '{"env": "prod"}'
# Cancel run
databricks jobs cancel-run 67890
# Delete job
databricks jobs delete 12345
Asset Bundle Operations
# Validate configuration
databricks bundle validate
# Deploy job
databricks bundle deploy
# Run job
databricks bundle run my_job_resource_key
# Deploy to specific target
databricks bundle deploy -t prod
# Destroy resources
databricks bundle destroy
Permissions (DABs)
resources:
jobs:
my_job:
name: "My Job"
permissions:
- level: CAN_VIEW
group_name: "data-analysts"
- level: CAN_MANAGE_RUN
group_name: "data-engineers"
- level: CAN_MANAGE
user_name: "admin@example.com"
Permission levels:
CAN_VIEW– View job and run historyCAN_MANAGE_RUN– View, trigger, and cancel runsCAN_MANAGE– Full control including edit and delete
Common Issues
| Issue | Solution |
|---|---|
| Job cluster startup slow | Use job clusters with job_cluster_key for reuse across tasks |
| Task dependencies not working | Verify task_key references match exactly in depends_on |
| Schedule not triggering | Check pause_status: UNPAUSED and valid timezone |
| File arrival not detecting | Ensure path has proper permissions and uses cloud storage URL |
| Table update trigger missing events | Verify Unity Catalog table and proper grants |
| Parameter not accessible | Use dbutils.widgets.get() in notebooks |
| “admins” group error | Cannot modify admins permissions on jobs |
| Serverless task fails | Ensure task type supports serverless (notebook, Python) |
Related Skills
- asset-bundles – Deploy jobs via Databricks Asset Bundles
- spark-declarative-pipelines – Configure pipelines triggered by jobs