numerical-methods
1
总安装量
1
周安装量
#43631
全站排名
安装命令
npx skills add https://github.com/data-wise/claude-plugins --skill numerical-methods
Agent 安装分布
replit
1
trae
1
opencode
1
cursor
1
claude-code
1
antigravity
1
Skill 文档
Numerical Methods
You are an expert in numerical stability and computational aspects of statistical methods.
Floating-Point Fundamentals
IEEE 754 Double Precision
- Precision: ~15-17 significant decimal digits
- Range: ~10â»Â³â°â¸ to 10³â°â¸
- Machine epsilon: ε â 2.2 à 10â»Â¹â¶
- Special values: Inf, -Inf, NaN
Key Constants in R
.Machine$double.eps # ~2.22e-16 (machine epsilon)
.Machine$double.xmax # ~1.80e+308 (max finite)
.Machine$double.xmin # ~2.23e-308 (min positive normalized)
.Machine$double.neg.eps # ~1.11e-16 (negative epsilon)
Common Numerical Issues
1. Catastrophic Cancellation
When subtracting nearly equal numbers:
# BAD: loses precision
x <- 1e10 + 1
y <- 1e10
result <- x - y # Should be 1, may have errors
# BETTER: reformulate to avoid subtraction
# Example: Computing variance
var_bad <- mean(x^2) - mean(x)^2 # Can be negative!
var_good <- sum((x - mean(x))^2) / (n-1) # Always non-negative
2. Overflow/Underflow
# BAD: overflow
prod(1:200) # Inf
# GOOD: work on log scale
sum(log(1:200)) # Then exp() if needed
# BAD: underflow in probabilities
prod(dnorm(x)) # 0 for large x
# GOOD: sum log probabilities
sum(dnorm(x, log = TRUE))
3. Log-Sum-Exp Trick
Essential for working with log probabilities:
log_sum_exp <- function(log_x) {
max_log <- max(log_x)
if (is.infinite(max_log)) return(max_log)
max_log + log(sum(exp(log_x - max_log)))
}
# Example: log(exp(-1000) + exp(-1001))
log_sum_exp(c(-1000, -1001)) # Correct: ~-999.69
log(exp(-1000) + exp(-1001)) # Wrong: -Inf
4. Softmax Stability
# BAD
softmax_bad <- function(x) exp(x) / sum(exp(x))
# GOOD
softmax <- function(x) {
x_max <- max(x)
exp_x <- exp(x - x_max)
exp_x / sum(exp_x)
}
Matrix Computations
Conditioning
The condition number κ(A) measures sensitivity to perturbation:
- κ(A) = âAâ · âAâ»Â¹â
- Rule: Expect to lose logââ(κ) digits of accuracy
- κ > 10¹ⵠmeans matrix is numerically singular
# Check condition number
kappa(X, exact = TRUE)
# For regression: check X'X conditioning
kappa(crossprod(X))
Solving Linear Systems
Prefer: Decomposition methods over explicit inversion
# BAD: explicit inverse
beta <- solve(t(X) %*% X) %*% t(X) %*% y
# GOOD: QR decomposition
beta <- qr.coef(qr(X), y)
# BETTER for positive definite: Cholesky
R <- chol(crossprod(X))
beta <- backsolve(R, forwardsolve(t(R), crossprod(X, y)))
# For ill-conditioned: SVD/pseudoinverse
beta <- MASS::ginv(X) %*% y
Symmetric Positive Definite Matrices
Always use specialized methods:
# Cholesky for SPD
L <- chol(Sigma)
# Eigendecomposition
eig <- eigen(Sigma, symmetric = TRUE)
# Check positive definiteness
all(eigen(Sigma, symmetric = TRUE, only.values = TRUE)$values > 0)
Optimization Stability
Gradient Computation
# Numerical gradient (for verification)
numerical_grad <- function(f, x, h = sqrt(.Machine$double.eps)) {
sapply(seq_along(x), function(i) {
x_plus <- x_minus <- x
x_plus[i] <- x[i] + h
x_minus[i] <- x[i] - h
(f(x_plus) - f(x_minus)) / (2 * h)
})
}
# Central difference is O(h²) accurate
# Forward difference is O(h) accurate
Hessian Stability
# Check Hessian is positive definite at optimum
check_hessian <- function(H, tol = 1e-8) {
eigs <- eigen(H, symmetric = TRUE, only.values = TRUE)$values
min_eig <- min(eigs)
list(
positive_definite = min_eig > tol,
min_eigenvalue = min_eig,
condition_number = max(eigs) / min_eig
)
}
Line Search
For gradient descent stability:
backtracking_line_search <- function(f, x, d, grad, alpha = 1, rho = 0.5, c = 1e-4) {
# Armijo condition
while (f(x + alpha * d) > f(x) + c * alpha * sum(grad * d)) {
alpha <- rho * alpha
if (alpha < 1e-10) break
}
alpha
}
Integration and Quadrature
Numerical Integration Guidelines
# Adaptive quadrature (default choice)
integrate(f, lower, upper)
# For infinite limits
integrate(f, -Inf, Inf)
# For highly oscillatory or peaked functions
# Increase subdivisions
integrate(f, lower, upper, subdivisions = 1000)
# For known singularities, split the domain
Monte Carlo Integration
mc_integrate <- function(f, n, lower, upper) {
x <- runif(n, lower, upper)
fx <- sapply(x, f)
estimate <- (upper - lower) * mean(fx)
se <- (upper - lower) * sd(fx) / sqrt(n)
list(value = estimate, se = se)
}
Root Finding
Newton-Raphson Stability
newton_raphson <- function(f, df, x0, tol = 1e-8, max_iter = 100) {
x <- x0
for (i in 1:max_iter) {
fx <- f(x)
dfx <- df(x)
# Check for near-zero derivative
if (abs(dfx) < .Machine$double.eps * 100) {
warning("Near-zero derivative")
break
}
x_new <- x - fx / dfx
if (abs(x_new - x) < tol) break
x <- x_new
}
x
}
Brent’s Method
For robust root finding without derivatives:
uniroot(f, interval = c(lower, upper), tol = .Machine$double.eps^0.5)
Statistical Computing Patterns
Safe Likelihood Computation
# Always work with log-likelihood
log_lik <- function(theta, data) {
# Compute log-likelihood, not likelihood
sum(dnorm(data, mean = theta[1], sd = theta[2], log = TRUE))
}
Robust Standard Errors
# Sandwich estimator with numerical stability
sandwich_se <- function(score, hessian) {
# Check Hessian conditioning
H_inv <- tryCatch(
solve(hessian),
error = function(e) MASS::ginv(hessian)
)
meat <- crossprod(score)
V <- H_inv %*% meat %*% H_inv
sqrt(diag(V))
}
Bootstrap with Error Handling
safe_bootstrap <- function(data, statistic, R = 1000) {
results <- numeric(R)
failures <- 0
for (i in 1:R) {
boot_data <- data[sample(nrow(data), replace = TRUE), ]
result <- tryCatch(
statistic(boot_data),
error = function(e) NA
)
results[i] <- result
if (is.na(result)) failures <- failures + 1
}
if (failures > 0.1 * R) {
warning(sprintf("%.1f%% bootstrap failures", 100 * failures / R))
}
list(
estimate = mean(results, na.rm = TRUE),
se = sd(results, na.rm = TRUE),
failures = failures
)
}
Debugging Numerical Issues
Diagnostic Checklist
- Check for NaN/Inf:
any(is.nan(x)),any(is.infinite(x)) - Check conditioning:
kappa(matrix) - Check eigenvalues: For PD matrices
- Check gradients: Numerically vs analytically
- Check scale: Variables on similar scales?
Debugging Functions
# Trace NaN/Inf sources
debug_numeric <- function(x, name = "x") {
cat(sprintf("%s: range [%.3g, %.3g], ", name, min(x), max(x)))
cat(sprintf("NaN: %d, Inf: %d, -Inf: %d\n",
sum(is.nan(x)), sum(x == Inf), sum(x == -Inf)))
}
# Check relative error
rel_error <- function(computed, true) {
abs(computed - true) / max(abs(true), 1)
}
Best Practices Summary
- Always work on log scale for products of probabilities
- Use QR or Cholesky instead of matrix inversion
- Check conditioning before solving linear systems
- Center and scale predictors in regression
- Handle edge cases (empty data, singular matrices)
- Use existing implementations (LAPACK, BLAS) when possible
- Test with extreme values (very small, very large, near-zero)
- Compare analytical and numerical gradients
- Monitor convergence in iterative algorithms
- Document numerical assumptions and limitations
Key References
- Higham
- Golub & Van Loan