adk-rag-agent

📁 cuba6112/skillfactory 📅 4 days ago
1
总安装量
1
周安装量
#47573
全站排名
安装命令
npx skills add https://github.com/cuba6112/skillfactory --skill adk-rag-agent

Agent 安装分布

mcpjam 1
claude-code 1
junie 1
windsurf 1
zencoder 1
crush 1

Skill 文档

Google ADK RAG Agent

Build agents that answer questions from document corpora using Vertex AI RAG Engine.

Requirements

  • Vertex AI backend (not Gemini API)
  • Google Cloud project with Vertex AI enabled
  • RAG corpus created in Vertex AI

Environment Variables

GOOGLE_GENAI_USE_VERTEXAI=1
GOOGLE_CLOUD_PROJECT=your-project-id
GOOGLE_CLOUD_LOCATION=us-central1
RAG_CORPUS=projects/{PROJECT_ID}/locations/{LOCATION}/ragCorpora/{CORPUS_ID}

Core Implementation

from google.adk import Agent
from google.adk.tools import VertexAiRagRetrieval

# Configure RAG retrieval tool
rag_tool = VertexAiRagRetrieval(
    name="retrieve_docs",
    description="Retrieve relevant documentation for the question",
    rag_corpus=os.environ["RAG_CORPUS"],
    similarity_top_k=10,
    vector_distance_threshold=0.6,
)

# Create agent with RAG tool
agent = Agent(
    name="rag_agent",
    model="gemini-2.0-flash-001",
    instruction=INSTRUCTION_PROMPT,
    tools=[rag_tool],
)

Instruction Prompt Pattern

INSTRUCTION_PROMPT = """
You are an AI assistant with access to a specialized document corpus.

RETRIEVAL:
- Use retrieve_docs for specific knowledge questions
- Skip retrieval for casual conversation
- Ask clarifying questions when intent is unclear

SCOPE:
- Only answer questions related to the corpus
- Say "I don't have information about that" for out-of-scope queries

CITATIONS:
- Always cite sources at the end of responses
- Format: [Title](url) or [Document Section](url)
- Consolidate multiple citations from the same source
"""

Corpus Setup

Create corpus via Vertex AI Console or SDK:

from vertexai.preview import rag

# Create corpus
corpus = rag.create_corpus(display_name="my-corpus")

# Import documents (PDF, TXT, HTML)
rag.import_files(
    corpus_name=corpus.name,
    paths=["gs://bucket/doc.pdf"],  # or local files
    chunk_size=512,
    chunk_overlap=100,
)

Key Parameters

Parameter Description Default
similarity_top_k Max chunks to retrieve 10
vector_distance_threshold Min similarity (0-1, lower=stricter) 0.6
chunk_size Tokens per chunk at import 512
chunk_overlap Overlap between chunks 100

Citation Best Practices

  1. Single source → single citation at end
  2. Multiple sources → list all citations
  3. Same document, multiple chunks → consolidate into one citation
  4. Never expose internal chunk IDs to users

References