modelmix
npx skills add https://github.com/clasen/modelmix --skill modelmix
Agent 安装分布
Skill 文档
ModelMix Library Skill
Overview
ModelMix is a Node.js library that provides a unified fluent API to interact with multiple AI LLM providers. It handles automatic fallback between models, round-robin load balancing, structured JSON output, streaming, MCP tool integration, rate limiting, and token tracking.
Use this skill when:
- Integrating one or more AI models into a Node.js project
- Chaining models with automatic fallback
- Extracting structured JSON from LLMs
- Adding MCP tools or custom tools to models
- Working with templates and file-based prompts
Do NOT use this skill for:
- Python or non-Node.js projects
- Direct HTTP calls to LLM APIs (use ModelMix instead)
Installation
npm install modelmix
Core Concepts
Import
import { ModelMix } from 'modelmix';
Creating an Instance
// Static factory (preferred)
const model = ModelMix.new();
// With global options
const model = ModelMix.new({
options: { max_tokens: 4096, temperature: 0.7 },
config: {
system: "You are a helpful assistant.",
max_history: 5,
debug: 0, // 0=silent, 1=minimal, 2=summary, 3=full
roundRobin: false // false=fallback, true=rotate models
}
});
Attaching Models (Fluent Chain)
Chain shorthand methods to attach providers. First model is primary; others are fallbacks:
const model = ModelMix.new()
.sonnet45() // primary
.gpt5mini() // fallback 1
.gemini3flash() // fallback 2
.addText("Hello!")
If sonnet45 fails, it automatically tries gpt5mini, then gemini3flash.
Available Model Shorthands
- OpenAI:
gpt52gpt51gpt5gpt5minigpt5nanogpt41gpt41minigpt41nano - Anthropic:
opus46opus45sonnet45sonnet4haiku45haiku35(thinking variants: addthinksuffix) - Google:
gemini3progemini3flashgemini25progemini25flash - Grok:
grok4grok41(thinking variant available) - Perplexity:
sonarsonarPro - Groq:
scoutmaverick - Together:
qwen3kimiK2 - Multi-provider:
deepseekR1gptOss - MiniMax:
minimaxM21 - Fireworks:
deepseekV32GLM47
Each method is called as mix.methodName() and accepts optional { options, config } to override per-model settings.
Common Tasks
Get a text response
const answer = await ModelMix.new()
.gpt5mini()
.addText("What is the capital of France?")
.message();
Get structured JSON
const result = await ModelMix.new()
.gpt5mini()
.addText("Name and capital of 3 South American countries.")
.json(
{ countries: [{ name: "", capital: "" }] }, // schema example
{ countries: [{ name: "country name", capital: "in uppercase" }] }, // descriptions
{ addNote: true } // options
);
// result.countries â [{ name: "Brazil", capital: "BRASILIA" }, ...]
json() signature: json(schemaExample, schemaDescription?, { addSchema, addExample, addNote }?)
Stream a response
await ModelMix.new()
.gpt5mini()
.addText("Tell me a story.")
.stream(({ delta, message }) => {
process.stdout.write(delta);
});
Get raw response (tokens, thinking, tool calls)
const raw = await ModelMix.new()
.sonnet45think()
.addText("Solve this step by step: 2+2*3")
.raw();
// raw.message, raw.think, raw.tokens, raw.toolCalls, raw.response
Access full response after message() or json() with lastRaw
After calling message(), json(), block(), or stream(), use lastRaw to access the complete response (tokens, thinking, tool calls, etc.). It has the same structure as raw().
const model = ModelMix.new().gpt5mini().addText("Hello!");
const text = await model.message();
console.log(model.lastRaw.tokens);
// { input: 122, output: 86, total: 541, cost: 0.000319 }
console.log(model.lastRaw.think); // reasoning content (if available)
console.log(model.lastRaw.response); // raw API response
Add images
const model = ModelMix.new().sonnet45();
model.addImage('./photo.jpg'); // from file
model.addImageFromUrl('https://example.com/img.png'); // from URL
model.addText('Describe this image.');
const description = await model.message();
Use templates with placeholders
const model = ModelMix.new().gpt5mini();
model.setSystemFromFile('./prompts/system.md');
model.addTextFromFile('./prompts/task.md');
model.replace({
'{role}': 'data analyst',
'{language}': 'Spanish'
});
model.replaceKeyFromFile('{code}', './src/utils.js');
console.log(await model.message());
Round-robin load balancing
const pool = ModelMix.new({ config: { roundRobin: true } })
.gpt5mini()
.sonnet45()
.gemini3flash();
// Each call rotates to the next model
const r1 = await pool.new().addText("Request 1").message();
const r2 = await pool.new().addText("Request 2").message();
MCP integration (external tools)
const model = ModelMix.new({ config: { max_history: 10 } }).gpt5nano();
model.setSystem('You are an assistant. Today is ' + new Date().toISOString());
await model.addMCP('@modelcontextprotocol/server-brave-search');
model.addText('Use Internet: What is the latest news about AI?');
console.log(await model.message());
Requires BRAVE_API_KEY in .env for Brave Search MCP.
Custom local tools (addTool)
const model = ModelMix.new({ config: { max_history: 10 } }).gpt5mini();
model.addTool({
name: "get_weather",
description: "Get weather for a city",
inputSchema: {
type: "object",
properties: { city: { type: "string" } },
required: ["city"]
}
}, async ({ city }) => {
return `The weather in ${city} is sunny, 25C`;
});
model.addText("What's the weather in Tokyo?");
console.log(await model.message());
Rate limiting (Bottleneck)
const model = ModelMix.new({
config: {
bottleneck: {
maxConcurrent: 4,
minTime: 1000
}
}
}).gpt5mini();
Debug mode
const model = ModelMix.new({
config: { debug: 2 } // 0=silent, 1=minimal, 2=summary, 3=full
}).gpt5mini();
For full debug output, also set the env: DEBUG=ModelMix* node script.js
Use free-tier models
// These use providers with free quotas (OpenRouter, Groq, Cerebras)
const model = ModelMix.new()
.gptOss()
.kimiK2()
.deepseekR1()
.hermes3()
.addText("What is the capital of France?");
console.log(await model.message());
Conversation history
const chat = ModelMix.new({ config: { max_history: 10 } }).gpt5mini();
chat.addText("My name is Martin.");
await chat.message();
chat.addText("What's my name?");
const reply = await chat.message(); // "Martin"
Agent Usage Rules
- Always check
package.jsonformodelmixbefore runningnpm install. - Use
ModelMix.new()static factory to create instances (notnew ModelMix()). - Store API keys in
.envand load withdotenv/configorprocess.loadEnvFile(). Never hardcode keys. - Chain models for resilience: primary model first, fallbacks after.
- When using MCP tools or
addTool(), setmax_historyto at least 3. - Use
.json()for structured output instead of parsing text manually. - Use
.message()for simple text,.raw()when you need tokens/thinking/toolCalls. - For thinking models, append
thinkto the method name (e.g.sonnet45think()). - Template placeholders use
{key}syntax in both system prompts and user messages. - The library uses CommonJS internally (
require) but supports ESM import via{ ModelMix }. - Available provider Mix classes for custom setups:
MixOpenAI,MixAnthropic,MixGoogle,MixPerplexity,MixGroq,MixTogether,MixGrok,MixOpenRouter,MixOllama,MixLMStudio,MixCustom,MixCerebras,MixFireworks,MixMiniMax.
API Quick Reference
| Method | Returns | Description |
|---|---|---|
.addText(text) |
this |
Add user message |
.addTextFromFile(path) |
this |
Add user message from file |
.setSystem(text) |
this |
Set system prompt |
.setSystemFromFile(path) |
this |
Set system prompt from file |
.addImage(path) |
this |
Add image from file |
.addImageFromUrl(url) |
this |
Add image from URL or data URI |
.replace({}) |
this |
Set placeholder replacements |
.replaceKeyFromFile(key, path) |
this |
Replace placeholder with file content |
.message() |
Promise<string> |
Get text response |
.json(example, desc?, opts?) |
Promise<object> |
Get structured JSON |
.raw() |
Promise<{message, think, toolCalls, tokens, response}> |
Full response |
.lastRaw |
object | null |
Full response from last message()/json()/block()/stream() call |
.stream(callback) |
Promise |
Stream response |
.block() |
Promise<string> |
Extract code block from response |
.addMCP(package) |
Promise |
Add MCP server tools |
.addTool(def, callback) |
this |
Register custom local tool |
.addTools([{tool, callback}]) |
this |
Register multiple tools |
.removeTool(name) |
this |
Remove a tool |
.listTools() |
{local, mcp} |
List registered tools |
.new() |
ModelMix |
Clone instance sharing models |
.attach(key, provider) |
this |
Attach custom provider |