funsloth-check

📁 chrisvoncsefalvay/funsloth 📅 Jan 28, 2026
1
总安装量
1
周安装量
#52425
全站排名
安装命令
npx skills add https://github.com/chrisvoncsefalvay/funsloth --skill funsloth-check

Agent 安装分布

windsurf 1
opencode 1
cursor 1
kiro-cli 1
codex 1
claude-code 1

Skill 文档

Dataset Validation for Unsloth Fine-tuning

Validate datasets before fine-tuning with Unsloth.

Quick Start

For automated validation, use the script:

python scripts/validate_dataset.py --dataset "dataset-id" --model llama-3.1-8b --lora-rank 16

Workflow

1. Get Dataset Source

Ask for: HF dataset ID (e.g., mlabonne/FineTome-100k) or local path (e.g., ./data.jsonl)

2. Load and Detect Format

Auto-detect format from structure. See DATA_FORMATS.md for details.

Format Detection Key Fields
Raw text only text
Alpaca instruction + output instruction, output
ShareGPT conversations array from, value
ChatML messages array role, content

3. Validate Schema

Check required fields exist. Report issues with fix suggestions.

4. Show Samples

Display 2-3 examples for visual verification.

5. Token Analysis

Report statistics: total tokens, min/max/mean/median sequence length.

Flag concerns:

  • Sequences > 4096 tokens
  • Sequences < 10 tokens

6. Chinchilla Analysis

Ask for target model and LoRA rank, then calculate:

Chinchilla Fraction Interpretation
< 0.5x Dataset may be too small
0.5x – 2.0x Good range
> 2.0x Large dataset, may take longer

7. Recommendations

Based on analysis, suggest:

  • standardize_sharegpt() for ShareGPT data
  • Sequence length adjustments
  • Learning rate for small datasets

8. Optional: HF Upload

Offer to upload local datasets to Hub.

9. Handoff

Pass context to funsloth-train:

dataset_id: "mlabonne/FineTome-100k"
format_type: "sharegpt"
total_tokens: 15000000
target_model: "llama-3.1-8b"
use_lora: true
lora_rank: 16
chinchilla_fraction: 1.2

Bundled Resources